Best CData Python Connectors Alternatives in 2025

Find the top alternatives to CData Python Connectors currently available. Compare ratings, reviews, pricing, and features of CData Python Connectors alternatives in 2025. Slashdot lists the best CData Python Connectors alternatives on the market that offer competing products that are similar to CData Python Connectors. Sort through CData Python Connectors alternatives below to make the best choice for your needs

  • 1
    CData Connect Reviews
    CData Connect Real-time operational and business data is critical for your organization to provide actionable insights and drive growth. CData Connect is the missing piece in your data value chain. CData Connect allows direct connectivity to any application that supports standard database connectivity. This includes popular cloud BI/ETL applications such as: - Amazon Glue - Amazon QuickSight Domo - Google Apps Script - Google Cloud Data Flow - Google Cloud Data Studio - Looker - Microsoft Power Apps - Microsoft Power Query - MicroStrategy Cloud - Qlik Sense Cloud - SAP Analytics Cloud SAS Cloud SAS Viya - Tableau Online ... and many other things! CData Connect acts as a data gateway by translating SQL and securely proxying API calls.
  • 2
    CData Power BI Connectors Reviews
    Your enterprise relies on immediate data from its backend infrastructures to provide actionable insights and foster growth. The CData Power BI Connectors serve as an essential component in optimizing your data value chain. These connectors present the quickest and simplest approach to linking Power BI with over 250 enterprise data sources, allowing you to harness the full potential of Power BI for comprehensive data analysis. With ease, you can connect Microsoft Power BI to live data from accounting, CRM, ERP, marketing automation, as well as both on-premise and cloud-based systems for real-time visual analytics and reporting. Numerous popular data sources are supported by Power BI connectors, such as: - Microsoft Dynamics CRM - MongoDB - NetSuite - QuickBooks - Sage Intacct - Salesforce - SAP - SharePoint - Snowflake - And over 200 additional sources! Furthermore, the CData Connectors enhance query speed and performance with advanced features like DirectQuery and QueryPushdown, ensuring that your data analysis is both efficient and effective. These capabilities empower businesses to make more informed decisions based on the latest available information.
  • 3
    Zato Reviews
    Do less to achieve greater results and make progress for your business and social initiatives. Zato is a Python-based open-source platform that allows you to build and deliver enterprise-level solutions with ease. It includes online APIs, data science and analytics, AI, machine learning, IoT and mainframe migrations. Python is a high-level, real programming language. Python is a very high-level, real programming language. Use dozens of connectors, adapters and protocols as well as components, integration capabilities, data formats and data formats to focus on high-level logic. Design and develop in your web browser or IDE, test API Integrations in pure English and plug into any CI/CD Pipeline. Deploy to cloud, on premises, or hybrid.
  • 4
    CData Sync Reviews
    CData Sync is a universal database pipeline that automates continuous replication between hundreds SaaS applications & cloud-based data sources. It also supports any major data warehouse or database, whether it's on-premise or cloud. Replicate data from hundreds cloud data sources to popular databases destinations such as SQL Server and Redshift, S3, Snowflake and BigQuery. It is simple to set up replication: log in, select the data tables you wish to replicate, then select a replication period. It's done. CData Sync extracts data iteratively. It has minimal impact on operational systems. CData Sync only queries and updates data that has been updated or added since the last update. CData Sync allows for maximum flexibility in partial and full replication scenarios. It ensures that critical data is safely stored in your database of choice. Get a 30-day trial of the Sync app for free or request more information at www.cdata.com/sync
  • 5
    GlassFlow Reviews

    GlassFlow

    GlassFlow

    $350 per month
    GlassFlow is an innovative, serverless platform for building event-driven data pipelines, specifically tailored for developers working with Python. It allows users to create real-time data workflows without the complexities associated with traditional infrastructure solutions like Kafka or Flink. Developers can simply write Python functions to specify data transformations, while GlassFlow takes care of the infrastructure, providing benefits such as automatic scaling, low latency, and efficient data retention. The platform seamlessly integrates with a variety of data sources and destinations, including Google Pub/Sub, AWS Kinesis, and OpenAI, utilizing its Python SDK and managed connectors. With a low-code interface, users can rapidly set up and deploy their data pipelines in a matter of minutes. Additionally, GlassFlow includes functionalities such as serverless function execution, real-time API connections, as well as alerting and reprocessing features. This combination of capabilities makes GlassFlow an ideal choice for Python developers looking to streamline the development and management of event-driven data pipelines, ultimately enhancing their productivity and efficiency. As the data landscape continues to evolve, GlassFlow positions itself as a pivotal tool in simplifying data processing workflows.
  • 6
    CData API Server Reviews
    The CData API Server makes it easy to create and deploy data-driven APIs. API Server allows users to create APIs that provide back-ends to internal applications, enable mobile development projects, expose data and deploy microservices of enterprise-class quality. The API Server is an application that comes with everything you need to create, manage, secure, and run APIs. It does not require any custom development. It allows you to create and distribute self-contained API endpoints on-premise and to the cloud. These endpoints can connect to any database or application and translate REST, JSON and OData API calls into your IT resources. API server includes API-critical features such as access-control, data security monitoring and management. It is a powerful tool that can modernize your back-end infrastructure. Download a 30-day free trial of CData API Server or learn more at: https://www.cdata.com/apiserver/
  • 7
    CData Drivers Reviews
    CData Software stands out as a premier provider of solutions for data access and connectivity, focusing on creating drivers and technologies that allow for real-time access to both online and on-premise applications, databases, and Web APIs. The versatility of CData Drivers allows users to connect to data through widely recognized standards and application platforms, including ODBC, JDBC, ADO.NET, OData, SSIS, BizTalk, and Excel. With a portfolio that boasts over 130 data sources, CData caters to a wide range of applications, encompassing analytics and BI platforms, CRM systems, ERP tools, data warehousing, databases, as well as popular SaaS solutions in finance, accounting, and marketing. CData Drivers empower users to effectively link BI, Reporting, and ETL tools to a multitude of data sources, drastically reduce development time by offering pre-built solutions, and utilize SQL for data access, eliminating the need for intricate coding. Renowned for their reliability, CData Drivers are trusted by users across the globe and come with robust support options, ensuring that assistance is available whenever it's needed. Whether you're a small business or a large enterprise, CData's solutions can significantly enhance your data management experience.
  • 8
    JetBrains DataSpell Reviews
    Easily switch between command and editor modes using just one keystroke while navigating through cells with arrow keys. Take advantage of all standard Jupyter shortcuts for a smoother experience. Experience fully interactive outputs positioned directly beneath the cell for enhanced visibility. When working within code cells, benefit from intelligent code suggestions, real-time error detection, quick-fix options, streamlined navigation, and many additional features. You can operate with local Jupyter notebooks or effortlessly connect to remote Jupyter, JupyterHub, or JupyterLab servers directly within the IDE. Execute Python scripts or any expressions interactively in a Python Console, observing outputs and variable states as they happen. Split your Python scripts into code cells using the #%% separator, allowing you to execute them one at a time like in a Jupyter notebook. Additionally, explore DataFrames and visual representations in situ through interactive controls, all while enjoying support for a wide range of popular Python scientific libraries, including Plotly, Bokeh, Altair, ipywidgets, and many others, for a comprehensive data analysis experience. This integration allows for a more efficient workflow and enhances productivity while coding.
  • 9
    CData Connect AI Reviews
    CData's artificial intelligence solution revolves around Connect AI, which offers AI-enhanced connectivity features that enable real-time, governed access to enterprise data without transferring it from the original systems. Connect AI operates on a managed Model Context Protocol (MCP) platform, allowing AI assistants, agents, copilots, and embedded AI applications to directly access and query over 300 data sources, including CRM, ERP, databases, and APIs, while fully comprehending the semantics and relationships of the data. The platform guarantees the enforcement of source system authentication, adheres to existing role-based permissions, and ensures that AI operations—both reading and writing—comply with governance and auditing standards. Furthermore, it facilitates capabilities such as query pushdown, parallel paging, bulk read/write functions, and streaming for extensive datasets, in addition to enabling cross-source reasoning through a cohesive semantic layer. Moreover, CData's "Talk to your Data" feature synergizes with its Virtuality offering, permitting users to engage in conversational interactions to retrieve BI insights and generate reports efficiently. This integration not only enhances user experience but also streamlines data accessibility across the enterprise.
  • 10
    GeoPandas Reviews
    GeoPandas is a community-driven open-source initiative designed to simplify the handling of geospatial data within Python. By expanding upon the data types available in pandas, GeoPandas facilitates spatial operations on geometric data types. The library utilizes shapely for executing geometric functions, while it relies on fiona for file management and matplotlib for visualization purposes. The primary aim of GeoPandas is to streamline the process of working with geospatial data in Python. This tool integrates the functionalities of both pandas and shapely, allowing users to perform geospatial tasks seamlessly within the pandas framework and providing an accessible interface for various geometric operations through shapely. With GeoPandas, users can conduct operations in Python that typically would necessitate a spatial database like PostGIS. The project is supported, developed, and utilized by a diverse global community of individuals with varying expertise. It remains committed to being fully open-source, available for everyone to utilize, and is released under the permissive BSD-3-Clause license, ensuring its continued accessibility and growth. As such, GeoPandas serves as a powerful resource for anyone looking to work with geospatial data in a user-friendly manner.
  • 11
    Ascend Reviews

    Ascend

    Ascend

    $0.98 per DFC
    Ascend provides data teams with a streamlined and automated platform that allows them to ingest, transform, and orchestrate their entire data engineering and analytics workloads at an unprecedented speed, achieving results ten times faster than before. This tool empowers teams that are often hindered by bottlenecks to effectively build, manage, and enhance the ever-growing volume of data workloads they face. With the support of DataAware intelligence, Ascend operates continuously in the background to ensure data integrity and optimize data workloads, significantly cutting down maintenance time by as much as 90%. Users can effortlessly create, refine, and execute data transformations through Ascend’s versatile flex-code interface, which supports the use of multiple programming languages such as SQL, Python, Java, and Scala interchangeably. Additionally, users can quickly access critical metrics including data lineage, data profiles, job and user logs, and system health indicators all in one view. Ascend also offers native connections to a continually expanding array of common data sources through its Flex-Code data connectors, ensuring seamless integration. This comprehensive approach not only enhances efficiency but also fosters stronger collaboration among data teams.
  • 12
    IronPython Reviews
    IronPython serves as an open-source version of the Python language, seamlessly integrated with the .NET framework. This enables IronPython to access both .NET and Python libraries, allowing other .NET languages to effortlessly invoke Python code. Enhance your development process with the interactive features of Python Tools for Visual Studio, which provide a more engaging environment for .NET and Python development. As a valuable asset to the .NET ecosystem, IronPython empowers Python developers to leverage the extensive capabilities of .NET. Additionally, .NET developers can utilize IronPython as a dynamic and efficient scripting language for embedding, testing, or developing new applications from the ground up. The Common Language Runtime (CLR) is an excellent foundation for programming language creation, and the Dynamic Language Runtime (DLR) further enhances its suitability for dynamic languages. Moreover, the extensive .NET base class libraries and presentation foundation offer developers a wealth of functionality and power. However, to take full advantage of IronPython, it's essential that your existing Python code is adjusted to align with IronPython's syntax and standard libraries. By doing so, developers can fully harness the benefits of this powerful integration.
  • 13
    Azure Notebooks Reviews
    Create and execute code seamlessly using Jupyter notebooks hosted on Azure. Begin your journey at no cost with a free Azure Subscription for an enhanced experience. Ideal for data scientists, developers, students, and individuals from various backgrounds, you can develop and run code directly in your browser, transcending industry boundaries and skill levels. The platform boasts compatibility with more programming languages than any competitor, including Python 2, Python 3, R, and F#. Developed by Microsoft Azure, it's designed to be accessible and available from any browser, no matter where you are in the world, ensuring that your coding needs are met anytime, anywhere. With its user-friendly interface and robust capabilities, it empowers users to explore their coding projects with ease and flexibility.
  • 14
    CData Arc Reviews

    CData Arc

    CData Arc International

    $0.00
    CData Arc, a leading B2B software and data connectivity solution, is used for secure managed file transfer (MFT), EDD processing and back-office integration. It connects enterprise applications such as CRMs, ERPs and RDBMS to automate complex processes. The application supports file transfer via a wide range of B2B messaging protocols, including AS2, AS4, OFTP and SFTP. Arc also supports interactive EDI mapping, translation and support for all major EDI protocols and standards such as X12 or EDIFACT. The codeless visual interface allows users to create complex workflows by using drag-and-drop workflow management. Drag-and-drop can also be used to transform data, allowing users to map data between formats such as JSON, XML and CSV. Get a 30-day free trial or more information on our website
  • 15
    Wing Python IDE Reviews
    Wing Python IDE is meticulously crafted specifically for Python, enhancing your overall productivity in development. With Wing, you can focus on writing less code while it manages the intricate details for you. Experience instant feedback as you interactively write your Python code within the live runtime environment, making coding smoother and more efficient. It allows for effortless navigation through your code and its documentation. Wing's comprehensive Python code analysis helps you circumvent common pitfalls and identify issues early on, ensuring a streamlined coding process. Maintain a tidy codebase with intelligent refactoring options and thorough code quality checks. You can debug any Python code seamlessly, examining debug data and experimenting with fixes interactively without the need to restart your application. Whether you are working locally or on a remote server, virtual machine, or container, Wing adapts to your needs. With over 21 years of expertise in creating Python IDEs, Wingware provides a uniquely Pythonic development environment. Built entirely in Python, Wing is not only designed for Python but is also extendable with Python, empowering you to enhance your productivity further. This seamless integration of features and tools makes Wing an invaluable asset for developers seeking an efficient Python coding experience.
  • 16
    Cython Reviews
    Cython serves as an optimizing static compiler designed for both the Python language and the enhanced Cython language, which is rooted in Pyrex. It simplifies the process of creating C extensions for Python, making it as straightforward as writing Python itself. With Cython, developers can harness the strengths of both Python and C, enabling seamless interactions between Python code and C or C++ code at any point. By incorporating static type declarations in a Python-like syntax, users can easily enhance the performance of their readable Python code to that of plain C. The tool also provides combined source code level debugging, allowing developers to efficiently identify issues within their Python, Cython, and C code. Cython is particularly adept at managing large datasets, such as multi-dimensional NumPy arrays, facilitating the development of applications within the expansive and robust CPython ecosystem. Notably, the Cython language extends the capabilities of Python by allowing direct calls to C functions and the declaration of C types for variables and class attributes, ultimately enhancing the development experience. This fusion of languages not only broadens the possibilities for developers but also streamlines the process of optimizing Python applications.
  • 17
    CVXOPT Reviews
    CVXOPT is an open-source software library designed for convex optimization, leveraging the capabilities of the Python programming language. Users can interact with it through the Python interpreter, execute scripts from the command line, or incorporate it into other applications as Python extension modules. The primary goal of CVXOPT is to facilitate the development of convex optimization software by utilizing Python's rich standard library and the inherent advantages of Python as a high-level programming tool. It provides efficient Python classes for both dense and sparse matrices, supporting real and complex numbers, along with features like indexing, slicing, and overloaded operations for performing matrix arithmetic. Additionally, CVXOPT includes interfaces to various solvers, such as the linear programming solver in GLPK, the semidefinite programming solver in DSDP5, and solvers for linear, quadratic, and second-order cone programming available in MOSEK, making it a versatile tool for researchers and developers in the field of optimization. This comprehensive set of features enhances its utility in tackling a wide range of optimization problems.
  • 18
    MLJAR Studio Reviews
    This desktop application integrates Jupyter Notebook and Python, allowing for a seamless one-click installation. It features engaging code snippets alongside an AI assistant that enhances coding efficiency, making it an ideal tool for data science endeavors. We have meticulously developed over 100 interactive code recipes tailored for your Data Science projects, which can identify available packages within your current environment. With a single click, you can install any required modules, streamlining your workflow significantly. Users can easily create and manipulate all variables present in their Python session, while these interactive recipes expedite the completion of tasks. The AI Assistant, equipped with knowledge of your active Python session, variables, and modules, is designed to address data challenges using the Python programming language. It offers support for various tasks, including plotting, data loading, data wrangling, and machine learning. If you encounter code issues, simply click the Fix button, and the AI assistant will analyze the problem and suggest a viable solution, making your coding experience smoother and more productive. Additionally, this innovative tool not only simplifies coding but also enhances your learning curve in data science.
  • 19
    broot Reviews
    The ROOT data analysis framework is widely utilized in High Energy Physics (HEP) and features its own file output format (.root). It seamlessly integrates with software developed in C++, while for Python users, there is an interface called pyROOT. However, pyROOT has compatibility issues with python3.4. To address this, broot is a compact library designed to transform data stored in Python's numpy ndarrays into ROOT files, structuring them with a branch for each array. This library aims to offer a standardized approach for exporting Python numpy data structures into ROOT files. Furthermore, it is designed to be portable and compatible with both Python2 and Python3, as well as ROOT versions 5 and 6, without necessitating changes to the ROOT components themselves—only a standard installation is needed. Users should find that installing the library requires minimal effort, as they only need to compile the library once or choose to install it as a Python package, making it a convenient tool for data analysis. Additionally, this ease of use encourages more researchers to adopt ROOT in their workflows.
  • 20
    Bokeh Reviews
    Bokeh simplifies the creation of standard visualizations while also accommodating unique or specialized scenarios. It allows users to publish plots, dashboards, and applications seamlessly on web pages or within Jupyter notebooks. The Python ecosystem boasts a remarkable collection of robust analytical libraries such as NumPy, Scipy, Pandas, Dask, Scikit-Learn, and OpenCV. With its extensive selection of widgets, plotting tools, and user interface events that can initiate genuine Python callbacks, the Bokeh server serves as a vital link, enabling the integration of these libraries into dynamic, interactive visualizations accessible via the browser. Additionally, Microscopium, a project supported by researchers at Monash University, empowers scientists to uncover new functions of genes or drugs through the exploration of extensive image datasets facilitated by Bokeh’s interactive capabilities. Another useful tool, Panel, which is developed by Anaconda, enhances data presentation by leveraging the Bokeh server. It streamlines the creation of custom interactive web applications and dashboards by linking user-defined widgets to a variety of elements, including plots, images, tables, and textual information, thus broadening the scope of data interaction possibilities. This combination of tools fosters a rich environment for data analysis and visualization, making it easier for researchers and developers to share their insights.
  • 21
    marimo Reviews
    Introducing an innovative reactive notebook designed for Python, which allows you to conduct repeatable experiments, run scripts seamlessly, launch applications, and manage versions using git. 🚀 Comprehensive: it serves as a substitute for jupyter, streamlit, jupytext, ipywidgets, papermill, and additional tools. ⚡️ Dynamic: when you execute a cell, marimo automatically runs all related cells or flags them as outdated. 🖐️ Engaging: easily connect sliders, tables, and plots to your Python code without the need for callbacks. 🔬 Reliable: ensures no hidden states, guarantees deterministic execution, and includes built-in package management for consistency. 🏃 Functional: capable of being executed as a Python script, allowing for customization via CLI arguments. 🛜 Accessible: can be transformed into an interactive web application or presentation, and functions in the browser using WASM. 🛢️ Tailored for data: efficiently query dataframes and databases using SQL, plus filter and search through dataframes effortlessly. 🐍 git-compatible: stores notebooks as .py files, making version control straightforward. ⌨️ A contemporary editor: features include GitHub Copilot, AI helpers, vim keybindings, a variable explorer, and an array of other enhancements to streamline your workflow. With these capabilities, this notebook elevates the way you work with Python, promoting a more efficient and collaborative coding environment.
  • 22
    Bottle Reviews
    Bottle is a lightweight and efficient WSGI micro web framework designed for Python. It comes packaged as a single-file module and relies solely on the Python Standard Library, ensuring minimal dependencies. The framework offers a straightforward approach to mapping requests to function calls, featuring support for clean and dynamic URLs. Additionally, it includes a fast and Pythonic built-in template engine while also accommodating external template engines like Mako, Jinja2, and Cheetah. Users benefit from easy access to various forms of data, including file uploads, cookies, headers, and other HTTP-related information. Moreover, Bottle includes a built-in HTTP development server and can work seamlessly with other WSGI-compatible HTTP servers such as Paste, Bjoern, GAE, and CherryPy. Its simplicity and versatility make it an appealing choice for developers looking to create web applications quickly and effectively.
  • 23
    Plotly Dash Reviews
    Dash & Dash Enterprise allow you to build and deploy analytic web applications using Python, R, or Julia. No JavaScript or DevOps are required. The world's most successful companies offer AI, ML and Python analytics at a fraction of the cost of full-stack development. Dash is the way they do it. Apps and dashboards that run advanced analytics such as NLP, forecasting and computer vision can be delivered. You can work in Python, R, or Julia. Reduce costs by migrating legacy per-seat license software to Dash Enterprise's unlimited end-user pricing model. You can deploy and update Dash apps faster without an IT or DevOps staff. You can create pixel-perfect web apps and dashboards without having to write any CSS. Kubernetes makes it easy to scale. High availability support for mission-critical Python apps
  • 24
    Python RPA Reviews

    Python RPA

    Python RPA

    $275 per month
    Experience an RPA platform that is both robust and budget-friendly. Leverage the adaptability of Python, the ease of low-code solutions, and the advantages of AI to achieve intelligent automation. The Python RPA platform simplifies the development and management of bots, making it user-friendly for developers. Thanks to Python's extensive capabilities, this platform serves as a powerful asset for streamlining business processes efficiently. It features an enterprise-grade orchestrator designed for the seamless management of both Python scripts and low-code initiatives. A basic understanding of Python is sufficient to embark on your automation journey confidently. Stay informed with real-time notifications and a comprehensive status management dashboard. The platform ensures an uninterrupted execution flow that maintains operational efficiency. User access is managed securely, protecting your credentials while logging all activities. You are free to utilize any library or framework in your project, and can develop your Python automation within any open-source Python development environment. This flexibility not only enhances creativity but also empowers teams to innovate without limits.
  • 25
    Rio Reviews
    Rio is an innovative open-source framework built in Python that allows developers to create both modern web and desktop applications solely using the Python programming language. Drawing inspiration from popular frameworks such as React and Flutter, Rio offers a declarative user interface model where components are represented as Python data classes equipped with a build() method, which supports reactive state management for smooth UI updates. The framework boasts over 50 pre-built components that conform to Google's Material Design principles, making it easier to design professional-quality user interfaces. With a layout system that is both Pythonic and user-friendly, Rio calculates the natural size of each component before allocating space, removing the necessity for conventional CSS styles. Furthermore, developers have the flexibility to run their applications either locally or directly in the browser, with FastAPI serving as the backend and communication facilitated through WebSockets. This seamless integration enhances the development experience, enabling a more efficient workflow for creating dynamic applications.
  • 26
    Python Reviews
    At the heart of extensible programming lies the definition of functions. Python supports both mandatory and optional parameters, keyword arguments, and even allows for arbitrary lists of arguments. Regardless of whether you're just starting out in programming or you have years of experience, Python is accessible and straightforward to learn. This programming language is particularly welcoming for beginners, while still offering depth for those familiar with other programming environments. The subsequent sections provide an excellent foundation to embark on your Python programming journey! The vibrant community organizes numerous conferences and meetups for collaborative coding and sharing ideas. Additionally, Python's extensive documentation serves as a valuable resource, and the mailing lists keep users connected. The Python Package Index (PyPI) features a vast array of third-party modules that enrich the Python experience. With both the standard library and community-contributed modules, Python opens the door to limitless programming possibilities, making it a versatile choice for developers of all levels.
  • 27
    Avanzai Reviews
    Avanzai accelerates your financial data analysis by allowing you to generate production-ready Python code through natural language commands. This innovative tool streamlines the financial analysis process for novices and seasoned professionals alike, utilizing simple English for interaction. You can effortlessly plot time series data, equity index components, and stock performance metrics with straightforward prompts. Eliminate tedious aspects of financial analysis by using AI to produce code with the necessary Python libraries pre-installed. Once the code is generated, you can modify it as needed, then easily transfer it into your local setup to dive right into your projects. Benefit from popular Python libraries tailored for quantitative analysis, including Pandas and Numpy, all while communicating in plain English. Elevate your financial analysis capabilities by swiftly accessing fundamental data and assessing the performance of nearly every US stock. With Avanzai, you can enhance your investment strategies using precise and timely information, empowering you to write the same Python scripts that quantitative analysts rely on for dissecting intricate financial datasets. This revolutionary approach not only simplifies the coding process but also enriches your understanding of data-driven investment decisions.
  • 28
    MicroPython Reviews
    The MicroPython pyboard is a small yet powerful electronic circuit board that operates MicroPython directly on the hardware, enabling a low-level Python environment suitable for managing various electronic projects. This implementation of MicroPython is rich in features, including an interactive prompt, arbitrary precision integers, closures, list comprehension, generators, and exception handling, among others. Remarkably, it is designed to fit and function within a mere 256k of code space and 16k of RAM. MicroPython's primary goal is to maintain a high degree of compatibility with standard Python, facilitating seamless code transfer from desktop environments to microcontrollers or embedded systems. Additionally, this flexibility makes it an excellent choice for hobbyists and professionals alike, as they can leverage their existing Python skills in new hardware applications.
  • 29
    urllib3 Reviews
    urllib3 is an efficient and easy-to-use HTTP client designed for Python developers. It has become a staple in the Python community, with numerous libraries relying on it for their functionality. This library includes essential features that are often absent in the standard library, such as thread safety, connection pooling, and client-side TLS/SSL verification. Additionally, it supports file uploads with multipart encoding and provides utilities for retrying requests as well as handling HTTP redirects. Furthermore, urllib3 is equipped to handle gzip, deflate, and brotli encoding, and it offers proxy support for both HTTP and SOCKS protocols. With comprehensive test coverage, it stands out as one of the most downloaded packages on PyPI, serving as a vital dependency for widely-used libraries like Requests and Pip. Additionally, urllib3 is distributed under the MIT License, making it accessible for developers. For detailed information, the API Reference documentation serves as a guide for understanding the API, while the User Guide is an excellent resource for learning how to effectively utilize the library for various tasks; if you're looking for advanced configurations, the Advanced Usage guide provides deeper insights into lower-level adjustments. This versatility makes urllib3 a key tool for anyone working with HTTP in Python.
  • 30
    Amazon MWAA Reviews
    Amazon Managed Workflows for Apache Airflow (MWAA) is a service that simplifies the orchestration of Apache Airflow, allowing users to efficiently establish and manage comprehensive data pipelines in the cloud at scale. Apache Airflow itself is an open-source platform designed for the programmatic creation, scheduling, and oversight of workflows, which are sequences of various processes and tasks. By utilizing Managed Workflows, users can leverage Airflow and Python to design workflows while eliminating the need to handle the complexities of the underlying infrastructure, ensuring scalability, availability, and security. This service adapts its workflow execution capabilities automatically to align with user demands and incorporates AWS security features, facilitating swift and secure data access. Overall, MWAA empowers organizations to focus on their data processes without the burden of infrastructure management.
  • 31
    Gurobi Optimizer Reviews
    By leveraging our advanced algorithms, you can enhance your model's complexity to more accurately reflect real-world scenarios while ensuring you can solve it within the given timeframe. Seamlessly incorporate Gurobi into your existing applications using familiar programming languages. Our user-friendly programming interfaces are crafted to be efficient and contemporary, helping you reduce the learning curve while boosting your overall productivity. The Python API we offer includes advanced modeling features that simplify the creation of optimization models, making the process more straightforward. You have the option to utilize Anaconda Python distributions, which come with pre-compiled libraries to facilitate application development, or choose Spyder for visual development and Jupyter for a notebook-style development experience, ensuring you have versatile tools at your disposal. Additionally, Gurobi's robust capabilities empower users to tackle increasingly complex optimization challenges with confidence.
  • 32
    Apache Airflow Reviews

    Apache Airflow

    The Apache Software Foundation

    Airflow is a community-driven platform designed for the programmatic creation, scheduling, and monitoring of workflows. With its modular architecture, Airflow employs a message queue to manage an unlimited number of workers, making it highly scalable. The system is capable of handling complex operations through its ability to define pipelines using Python, facilitating dynamic pipeline generation. This flexibility enables developers to write code that can create pipelines on the fly. Users can easily create custom operators and expand existing libraries, tailoring the abstraction level to meet their specific needs. The pipelines in Airflow are both concise and clear, with built-in parametrization supported by the robust Jinja templating engine. Eliminate the need for complex command-line operations or obscure XML configurations! Instead, leverage standard Python functionalities to construct workflows, incorporating date-time formats for scheduling and utilizing loops for the dynamic generation of tasks. This approach ensures that you retain complete freedom and adaptability when designing your workflows, allowing you to efficiently respond to changing requirements. Additionally, Airflow's user-friendly interface empowers teams to collaboratively refine and optimize their workflow processes.
  • 33
    pyglet Reviews
    Pyglet is a versatile and user-friendly library designed for Python, enabling the creation of games and visually engaging applications across various operating systems, including Windows, Mac OS X, and Linux. It offers a comprehensive range of features such as window management, event handling for user interfaces, support for joysticks, OpenGL graphics, image and video loading, as well as sound and music playback. The library boasts a user-friendly Pythonic API that is straightforward to grasp, ensuring a smooth development experience. Licensed under the BSD open-source license, pyglet allows for both commercial use and contributions to other open-source projects with minimal restrictions. It requires no external dependencies or complex installation processes, as it operates solely on Python, which streamlines both distribution and installation. This simplicity makes it convenient to bundle your project using tools like PyInstaller. Additionally, pyglet facilitates the use of genuine platform-native windows, giving developers the ability to leverage multiple windows and accommodate multi-monitor setups efficiently. With such capabilities, pyglet stands out as an excellent choice for developers looking to create rich multimedia applications in Python.
  • 34
    NiceGUI Reviews
    NiceGUI is an open-source library designed for Python that empowers developers to craft web-based graphical user interfaces (GUIs) using solely Python code. It boasts an approachable learning curve and simultaneously allows for sophisticated customizations. Adopting a backend-first approach, NiceGUI takes care of all web development intricacies, enabling developers to concentrate on their Python code. This framework is well-suited for diverse applications, from simple scripts and dashboards to robotics, IoT systems, smart home automation, and machine learning initiatives. It is constructed on FastAPI for backend functions, utilizes Vue.js for frontend interactions, and incorporates Tailwind CSS for styling aesthetics. With NiceGUI, developers can effortlessly create various elements, including buttons, dialogs, Markdown content, 3D visualizations, plots, and much more—all within a Python-centric environment. Furthermore, it facilitates real-time interactivity via WebSocket connections, allowing for immediate updates in the browser without needing to refresh the page. Additionally, NiceGUI provides a plethora of components and layout configurations, like rows and columns, ensuring versatile design possibilities for users.
  • 35
    imageio Reviews
    Imageio is a versatile Python library that simplifies the process of reading and writing various types of image data, such as animated images, volumetric data, and scientific formats. It is designed to be cross-platform, compatible with Python versions 3.5 and later, and installation is straightforward. Since Imageio is developed entirely in Python, users can expect a seamless setup. It supports Python 3.5+ and is also functional on Pypy. The library relies on Numpy and Pillow for its operations, and for certain image formats, additional libraries or executables like ffmpeg may be required, which Imageio assists users in acquiring. In case of issues, understanding where to look for potential problems is crucial. This overview aims to provide insights into the workings of Imageio, enabling users to identify possible points of failure. By familiarizing yourself with these functionalities, you can enhance your troubleshooting skills when using the library.
  • 36
    Beautiful Soup Reviews
    Beautiful Soup is a powerful library designed for the straightforward extraction of data from web pages. It operates on top of an HTML or XML parser, offering Pythonic conventions for traversing, searching, and altering the parse tree. Support for Python 2 was officially ended on December 31, 2020, precisely one year after Python 2 reached its end of life. Consequently, all new developments for Beautiful Soup will now be exclusively focused on Python 3. The last version of Beautiful Soup 4 that provided support for Python 2 was 4.9.3. Additionally, Beautiful Soup is distributed under the MIT license, allowing users to easily download the tarball, incorporate the bs4/ directory into nearly any Python project or library path, and begin utilizing its capabilities right away. This accessibility ensures that developers can quickly integrate web scraping functionalities into their applications without significant barriers.
  • 37
    Cegal Prizm Reviews
    Cegal Prizm is a flexible solution crafted to facilitate the seamless integration of data from various geo-applications, data sources, and platforms within a Python ecosystem. Its modular structure enables users to merge geo-data sources for sophisticated analysis, visualization, data science workflows, and machine learning applications. This innovation empowers users to tackle challenges that were previously unmanageable with older systems. By incorporating contemporary Python technologies, you can enhance, speed up, and improve standard workflows while creating and securely sharing tailored code, services, and technologies with a user community for their use. Furthermore, it connects effortlessly with the E&P software platform Petrel, OSDU, and various third-party applications and domains, allowing for the access and retrieval of energy data. Data can be transferred smoothly, whether locally or across hybrid and cloud environments, into a unified Python setting to derive greater insights and added value. Additionally, Prizm enables the enhancement of datasets with supplementary application metadata, thereby providing more depth and context to your analytical processes. The ability to customize and share these enriched datasets among users fosters collaboration and innovation within the community.
  • 38
    Conda Reviews
    Conda serves as an open-source solution for managing packages, dependencies, and environments across various programming languages, including Python, R, Ruby, Lua, Scala, Java, JavaScript, C/C++, Fortran, and others. This versatile system operates seamlessly on multiple platforms such as Windows, macOS, Linux, and z/OS. With the ability to swiftly install, execute, and upgrade packages alongside their dependencies, Conda enhances productivity. It simplifies the process of creating, saving, loading, and switching between different environments on your device. Originally designed for Python applications, Conda's capabilities extend to packaging and distributing software for any programming language. Acting as an efficient package manager, it aids users in locating and installing the packages they require. If you find yourself needing a package that depends on an alternate Python version, there’s no need to switch to a different environment manager; Conda fulfills that role as well. You can effortlessly establish an entirely separate environment to accommodate that specific version of Python, while still utilizing your standard version in your default environment. This flexibility makes Conda an invaluable tool for developers working with diverse software requirements.
  • 39
    PythonJobsHQ Reviews
    Python Jobs HQ serves as a dedicated job board for Python enthusiasts, created by Python developers for their peers. This platform is operated by the same team behind PyCoder’s Weekly, a well-regarded Python newsletter that boasts over 100,000 subscribers and more than 265,000 followers on Twitter. Your job listings are featured in the job section of the PyCoder’s Weekly newsletter for 45 days, allowing you to reach an audience of over 105,000 email subscribers. Additionally, job seekers with profiles that match your openings who have registered on PythonJobsHQ will receive notifications about your postings. As an added advantage, your listings gain further visibility on various software industry job boards supported by ZipRecruiter. Python Jobs HQ is an exceptional tool for connecting with enthusiastic and skilled Python developers and data scientists who are passionate about their work. To enhance your hiring process, you can request a free, confidential review from a resume expert at our partner, TopResume, to pinpoint strengths and areas for improvement in your resume. This service not only helps you refine your approach to attracting talent but also supports your overall recruitment strategy.
  • 40
    GeoSpock Reviews
    GeoSpock revolutionizes data integration for a connected universe through its innovative GeoSpock DB, a cutting-edge space-time analytics database. This cloud-native solution is specifically designed for effective querying of real-world scenarios, enabling the combination of diverse Internet of Things (IoT) data sources to fully harness their potential, while also streamlining complexity and reducing expenses. With GeoSpock DB, users benefit from efficient data storage, seamless fusion, and quick programmatic access, allowing for the execution of ANSI SQL queries and the ability to link with analytics platforms through JDBC/ODBC connectors. Analysts can easily conduct evaluations and disseminate insights using familiar toolsets, with compatibility for popular business intelligence tools like Tableau™, Amazon QuickSight™, and Microsoft Power BI™, as well as support for data science and machine learning frameworks such as Python Notebooks and Apache Spark. Furthermore, the database can be effortlessly integrated with internal systems and web services, ensuring compatibility with open-source and visualization libraries, including Kepler and Cesium.js, thus expanding its versatility in various applications. This comprehensive approach empowers organizations to make data-driven decisions efficiently and effectively.
  • 41
    Reflex Reviews

    Reflex

    Pynecone

    $20 per month
    Reflex is an innovative open-source framework designed for Python developers, enabling the creation of comprehensive web applications solely using pure Python, thereby removing the necessity for JavaScript or intricate frontend frameworks. With Reflex, developers can seamlessly write, test, and enhance their applications exclusively in Python, providing a rapid, adaptable, and scalable development experience. The framework boasts an AI Builder that enables users to articulate their app concepts, instantly generating a fully functional Python application that encompasses backend, frontend, and database integration. Reflex’s architecture simplifies the frontend into a single-page Next.js application while utilizing FastAPI for the backend, with real-time communication facilitated through WebSockets. This design guarantees that all crucial app logic and state management are retained in Python and executed on the server side. Furthermore, Reflex includes over 60 pre-built components based on Radix UI and allows for the integration of custom React components, empowering developers to craft intricate user interfaces without the need to write HTML or CSS. Ultimately, this framework revolutionizes the way web applications are developed by providing a unified programming language throughout the entire stack.
  • 42
    QuantRocket Reviews
    QuantRocket is a Python-based platform for researching, backtesting, and trading quantitative strategies. Built on Docker, QuantRocket can be deployed locally or to the cloud and has an open architecture that is flexible and extensible. It provides a JupyterLab environment, offers a suite of data integrations, and supports multiple backtesters: Zipline, the open-source backtester that originally powered Quantopian; Alphalens, an alpha factor analysis library; Moonshot, a vectorized backtester based on pandas; and MoonshotML, a walk-forward machine learning backtester.
  • 43
    ruffus Reviews
    Ruffus is a Python library designed for creating computation pipelines, known for being open-source, robust, and user-friendly, making it particularly popular in scientific and bioinformatics fields. This tool streamlines the automation of scientific and analytical tasks with minimal hassle and effort, accommodating both simple and extremely complex pipelines that might confuse traditional tools like make or scons. It embraces a straightforward approach without relying on "clever magic" or pre-processing, focusing instead on a lightweight syntax that aims to excel in its specific function. Under the permissive MIT free software license, Ruffus can be freely utilized and incorporated, even in proprietary applications. For optimal performance, it is advisable to execute your pipeline in a separate “working” directory, distinct from your original data. Ruffus serves as a versatile Python module for constructing computational workflows and requires a Python version of 2.6 or newer, or 3.0 and above, ensuring compatibility across various environments. Moreover, its simplicity and effectiveness make it a valuable tool for researchers looking to enhance their data processing capabilities.
  • 44
    pexpect Reviews
    Pexpect enhances the functionality of Python when it comes to managing other applications. This pure Python library excels at spawning child processes, overseeing them, and reacting to predefined output patterns. Similar to Don Libes’ Expect, Pexpect allows your scripts to interact with child applications as if a human were entering commands. It is particularly useful for automating the control of interactive applications such as ssh, FTP, passwd, and telnet. Additionally, Pexpect can facilitate the automation of setup scripts, making it easier to replicate software package installations across various servers. It is also valuable for conducting automated software testing. While Pexpect is inspired by the principles of Expect, it is entirely implemented in Python, setting it apart from other similar modules. Notably, Pexpect does not necessitate the use of TCL or Expect, nor does it require the compilation of C extensions. This feature makes it versatile across any platform that supports Python's standard pty module. The user-friendly design of the Pexpect interface ensures ease of use for developers. Overall, Pexpect stands out as an effective tool for automating and controlling various applications seamlessly.
  • 45
    Flojoy Reviews

    Flojoy

    Flojoy

    $150 per month
    You can build and run powerful AI and engineering apps in just 5 minutes after downloading Flojoy Studio. No coding skills are required. Engineers use Flojoy Studio for streaming measurements from robotics and microcontrollers to Flojoy Cloud. Once in Flojoy Cloud this research data can then be analyzed, archived and downloaded by team members. Flojoy is a de facto resource for open source instrument control in Python. Flojoy's mission is to provide first-class Python support for every major motion platform, including robotic arms, steppermotors, servos and linear actuators.