Best Observability Tools for Amazon EMR

Find and compare the best Observability tools for Amazon EMR in 2025

Use the comparison tool below to compare the top Observability tools for Amazon EMR on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    New Relic Reviews
    Top Pick
    See Tool
    Learn More
    New Relic's enterprise-grade Observability solution offers an all-encompassing platform to gain profound insights into the functionality and dynamics of your software systems. Tailored for extensive operations, our integrated data platform consolidates telemetry information from your entire technological ecosystem, presenting robust full-stack analysis tools that provide in-depth understanding of system performance, interdependencies, and behavior. Featuring real-time monitoring, automated notifications, and customizable dashboards, New Relic empowers you to proactively detect and resolve issues, enhance performance, and ensure outstanding customer experiences. Streamline observability, boost operational efficiency, and foster innovation with New Relic's cutting-edge Observability offerings.
  • 2
    IBM Databand Reviews
    Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations.
  • 3
    Sifflet Reviews
    Effortlessly monitor thousands of tables through machine learning-driven anomaly detection alongside a suite of over 50 tailored metrics. Ensure comprehensive oversight of both data and metadata while meticulously mapping all asset dependencies from ingestion to business intelligence. This solution enhances productivity and fosters collaboration between data engineers and consumers. Sifflet integrates smoothly with your existing data sources and tools, functioning on platforms like AWS, Google Cloud Platform, and Microsoft Azure. Maintain vigilance over your data's health and promptly notify your team when quality standards are not satisfied. With just a few clicks, you can establish essential coverage for all your tables. Additionally, you can customize the frequency of checks, their importance, and specific notifications simultaneously. Utilize machine learning-driven protocols to identify any data anomalies with no initial setup required. Every rule is supported by a unique model that adapts based on historical data and user input. You can also enhance automated processes by utilizing a library of over 50 templates applicable to any asset, thereby streamlining your monitoring efforts even further. This approach not only simplifies data management but also empowers teams to respond proactively to potential issues.
  • Previous
  • You're on page 1
  • Next