Best Machine Learning Software for Visual Studio Code

Find and compare the best Machine Learning software for Visual Studio Code in 2025

Use the comparison tool below to compare the top Machine Learning software for Visual Studio Code on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Deepnote Reviews
    Deepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud.
  • 2
    VESSL AI Reviews

    VESSL AI

    VESSL AI

    $100 + compute/month
    Fully managed infrastructure, tools and workflows allow you to build, train and deploy models faster. Scale inference and deploy custom AI & LLMs in seconds on any infrastructure. Schedule batch jobs to handle your most demanding tasks, and only pay per second. Optimize costs by utilizing GPUs, spot instances, and automatic failover. YAML simplifies complex infrastructure setups by allowing you to train with a single command. Automate the scaling up of workers during periods of high traffic, and scaling down to zero when inactive. Deploy cutting edge models with persistent endpoints within a serverless environment to optimize resource usage. Monitor system and inference metrics, including worker counts, GPU utilization, throughput, and latency in real-time. Split traffic between multiple models to evaluate.
  • 3
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 4
    CognitiveScale Cortex AI Reviews
    To develop AI solutions, engineers must have a resilient, open, repeatable engineering approach to ensure quality and agility. These efforts have not been able to address the challenges of today's complex environment, which is filled with a variety of tools and rapidly changing data. Platform for collaborative development that automates the control and development of AI applications across multiple persons. To predict customer behavior in real-time, and at scale, we can derive hyper-detailed customer profiles using enterprise data. AI-powered models that can continuously learn and achieve clearly defined business results. Allows organizations to demonstrate compliance with applicable rules and regulations. CognitiveScale's Cortex AI Platform is designed to address enterprise AI use cases using modular platform offerings. Customers use and leverage its capabilities in microservices as part of their enterprise AI initiatives.
  • Previous
  • You're on page 1
  • Next