Best Machine Learning Software for Gemma 2

Find and compare the best Machine Learning software for Gemma 2 in 2025

Use the comparison tool below to compare the top Machine Learning software for Gemma 2 on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    TensorFlow Reviews
    Open source platform for machine learning. TensorFlow is a machine learning platform that is open-source and available to all. It offers a flexible, comprehensive ecosystem of tools, libraries, and community resources that allows researchers to push the boundaries of machine learning. Developers can easily create and deploy ML-powered applications using its tools. Easy ML model training and development using high-level APIs such as Keras. This allows for quick model iteration and debugging. No matter what language you choose, you can easily train and deploy models in cloud, browser, on-prem, or on-device. It is a simple and flexible architecture that allows you to quickly take new ideas from concept to code to state-of the-art models and publication. TensorFlow makes it easy to build, deploy, and test.
  • 2
    PyTorch Reviews
    TorchScript allows you to seamlessly switch between graph and eager modes. TorchServe accelerates the path to production. The torch-distributed backend allows for distributed training and performance optimization in production and research. PyTorch is supported by a rich ecosystem of libraries and tools that supports NLP, computer vision, and other areas. PyTorch is well-supported on major cloud platforms, allowing for frictionless development and easy scaling. Select your preferences, then run the install command. Stable is the most current supported and tested version of PyTorch. This version should be compatible with many users. Preview is available for those who want the latest, but not fully tested, and supported 1.10 builds that are generated every night. Please ensure you have met the prerequisites, such as numpy, depending on which package manager you use. Anaconda is our preferred package manager, as it installs all dependencies.
  • 3
    Vertex AI Reviews
    Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
  • 4
    Google Colab Reviews
    Google Colab is a cloud-based Jupyter Notebook environment that allows users to write and execute Python code without any setup required. It provides access to powerful computing resources, including GPUs and TPUs, making it an excellent tool for machine learning, data analysis, and academic research. Colab is designed for collaborative work, enabling users to share notebooks with others, track changes, and easily integrate with Google Drive for file storage. It is particularly beneficial for both beginners and professionals seeking a free, interactive platform for experimenting with code and data. With Colab notebooks, you can integrate executable code with rich text, images, LaTeX, HTML, and other elements in a single document. All notebooks you create are saved to your Google Drive. Sharing with colleagues or friends is easy, allowing them to comment or edit your work. Additionally, Colab now provides a Data Science Agent that automates the entire analysis process, from data understanding to delivering insights in a functional notebook. (Note: Sequences are shortened, and results are for illustration. The Data Science Agent may occasionally make errors.)
  • 5
    Hugging Face Reviews

    Hugging Face

    Hugging Face

    $9 per month
    AutoTrain is a new way to automatically evaluate, deploy and train state-of-the art Machine Learning models. AutoTrain, seamlessly integrated into the Hugging Face ecosystem, is an automated way to develop and deploy state of-the-art Machine Learning model. Your account is protected from all data, including your training data. All data transfers are encrypted. Today's options include text classification, text scoring and entity recognition. Files in CSV, TSV, or JSON can be hosted anywhere. After training is completed, we delete all training data. Hugging Face also has an AI-generated content detection tool.
  • 6
    Google AI Studio Reviews
    Google AI Studio is an online tool that's free and allows individuals and small groups to create apps and chatbots by using natural language prompting. It allows users to create API keys and prompts for app development. Google AI Studio allows users to discover Gemini Pro's APIs, create prompts and fine-tune Gemini. It also offers generous free quotas, allowing 60 requests a minute. Google has also developed a Generative AI Studio based on Vertex AI. It has models of various types that allow users to generate text, images, or audio content.
  • 7
    VESSL AI Reviews

    VESSL AI

    VESSL AI

    $100 + compute/month
    Fully managed infrastructure, tools and workflows allow you to build, train and deploy models faster. Scale inference and deploy custom AI & LLMs in seconds on any infrastructure. Schedule batch jobs to handle your most demanding tasks, and only pay per second. Optimize costs by utilizing GPUs, spot instances, and automatic failover. YAML simplifies complex infrastructure setups by allowing you to train with a single command. Automate the scaling up of workers during periods of high traffic, and scaling down to zero when inactive. Deploy cutting edge models with persistent endpoints within a serverless environment to optimize resource usage. Monitor system and inference metrics, including worker counts, GPU utilization, throughput, and latency in real-time. Split traffic between multiple models to evaluate.
  • 8
    Kaggle Reviews
    Kaggle provides a Jupyter Notebooks environment that is customizable and easy to set up. You can access free GPUs and a large repository of community-published data & codes. Kaggle contains all the code and data you need for data science. You can conquer any analysis with over 19,000 public datasets, and 200,000 public notebooks.
  • Previous
  • You're on page 1
  • Next