Best Machine Learning Software for AWS Lambda

Find and compare the best Machine Learning software for AWS Lambda in 2024

Use the comparison tool below to compare the top Machine Learning software for AWS Lambda on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Amazon CodeGuru Reviews
    Amazon CodeGuru is an intelligent developer tool that uses machine learning to make intelligent recommendations for improving code quality, and identifying the most costly lines of code in an application. Integrate Amazon CodeGuru in your existing software development workflow to get built-in code reviews that will help you identify and optimize the most expensive lines of code to lower costs. Amazon CodeGuru Profiler allows developers to find the most expensive lines in an application's code. It also provides visualizations and suggestions on how to improve code to make it more affordable. Amazon CodeGuru Reviewer uses machine-learning to identify critical issues and difficult-to-find bugs in application development to improve code quality.
  • 2
    InsightFinder Reviews

    InsightFinder

    InsightFinder

    $2.5 per core per month
    InsightFinder Unified Intelligence Engine platform (UIE) provides human-centered AI solutions to identify root causes of incidents and prevent them from happening. InsightFinder uses patented self-tuning, unsupervised machine learning to continuously learn from logs, traces and triage threads of DevOps Engineers and SREs to identify root causes and predict future incidents. Companies of all sizes have adopted the platform and found that they can predict business-impacting incidents hours ahead of time with clearly identified root causes. You can get a complete overview of your IT Ops environment, including trends and patterns as well as team activities. You can also view calculations that show overall downtime savings, cost-of-labor savings, and the number of incidents solved.
  • 3
    BentoML Reviews
    Your ML model can be served in minutes in any cloud. Unified model packaging format that allows online and offline delivery on any platform. Our micro-batching technology allows for 100x more throughput than a regular flask-based server model server. High-quality prediction services that can speak the DevOps language, and seamlessly integrate with common infrastructure tools. Unified format for deployment. High-performance model serving. Best practices in DevOps are incorporated. The service uses the TensorFlow framework and the BERT model to predict the sentiment of movie reviews. DevOps-free BentoML workflow. This includes deployment automation, prediction service registry, and endpoint monitoring. All this is done automatically for your team. This is a solid foundation for serious ML workloads in production. Keep your team's models, deployments and changes visible. You can also control access via SSO and RBAC, client authentication and auditing logs.
  • 4
    Amazon Lookout for Metrics Reviews
    Reduce false positives by using machine learning (ML), to detect anomalies in business metrics. Grouping outliers that are similar can help you identify the root cause of any anomalies. Summarize root causes, and rank them according to severity. Integrate AWS databases, storage services and third-party SaaS apps seamlessly to monitor metrics and detect anomalies. Automate the sending of customized alerts and taking appropriate actions when anomalies are detected. Automatically detect anomalies in metrics and identify their root causes. Lookout for Metrics uses ML for diagnosing and detecting anomalies in business and operational data. It is difficult to detect unexpected anomalies using traditional methods that are manual and error-prone. Lookout for Metrics uses ML without the need for any artificial intelligence (AI). You can identify unusual variances in subscriptions and conversion rates so you can keep up with sudden changes.
  • 5
    Amazon SageMaker Debugger Reviews
    Optimize ML models with real-time training metrics capture and alerting when anomalies are detected. To reduce the time and costs of training ML models, stop training when the desired accuracy has been achieved. To continuously improve resource utilization, automatically profile and monitor the system's resource utilization. Amazon SageMaker Debugger reduces troubleshooting time from days to minutes. It automatically detects and alerts you when there are common errors in training, such as too large or too small gradient values. You can view alerts in Amazon SageMaker Studio, or configure them through Amazon CloudWatch. The SageMaker Debugger SDK allows you to automatically detect new types of model-specific errors like data sampling, hyperparameter value, and out-of bound values.
  • Previous
  • You're on page 1
  • Next