Best Large Language Models in Japan - Page 9

Find and compare the best Large Language Models in Japan in 2025

Use the comparison tool below to compare the top Large Language Models in Japan on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Phi-4 Reviews
    Phi-4 is an advanced small language model (SLM) comprising 14 billion parameters, showcasing exceptional capabilities in intricate reasoning tasks, particularly in mathematics, alongside typical language processing functions. As the newest addition to the Phi family of small language models, Phi-4 illustrates the potential advancements we can achieve while exploring the limits of SLM technology. It is currently accessible on Azure AI Foundry under a Microsoft Research License Agreement (MSRLA) and is set to be released on Hugging Face in the near future. Due to significant improvements in processes such as the employment of high-quality synthetic datasets and the careful curation of organic data, Phi-4 surpasses both comparable and larger models in mathematical reasoning tasks. This model not only emphasizes the ongoing evolution of language models but also highlights the delicate balance between model size and output quality. As we continue to innovate, Phi-4 stands as a testament to our commitment to pushing the boundaries of what's achievable within the realm of small language models.
  • 2
    Yi-Lightning Reviews
    Yi-Lightning, a product of 01.AI and spearheaded by Kai-Fu Lee, marks a significant leap forward in the realm of large language models, emphasizing both performance excellence and cost-effectiveness. With the ability to process a context length of up to 16K tokens, it offers an attractive pricing model of $0.14 per million tokens for both inputs and outputs, making it highly competitive in the market. The model employs an improved Mixture-of-Experts (MoE) framework, featuring detailed expert segmentation and sophisticated routing techniques that enhance its training and inference efficiency. Yi-Lightning has distinguished itself across multiple fields, achieving top distinctions in areas such as Chinese language processing, mathematics, coding tasks, and challenging prompts on chatbot platforms, where it ranked 6th overall and 9th in style control. Its creation involved an extensive combination of pre-training, targeted fine-tuning, and reinforcement learning derived from human feedback, which not only enhances its performance but also prioritizes user safety. Furthermore, the model's design includes significant advancements in optimizing both memory consumption and inference speed, positioning it as a formidable contender in its field.
  • 3
    OpenEuroLLM Reviews
    OpenEuroLLM represents a collaborative effort between prominent AI firms and research organizations across Europe, aimed at creating a suite of open-source foundational models to promote transparency in artificial intelligence within the continent. This initiative prioritizes openness by making data, documentation, training and testing code, and evaluation metrics readily available, thereby encouraging community participation. It is designed to comply with European Union regulations, with the goal of delivering efficient large language models that meet the specific standards of Europe. A significant aspect of the project is its commitment to linguistic and cultural diversity, ensuring that multilingual capabilities cover all official EU languages and potentially more. The initiative aspires to broaden access to foundational models that can be fine-tuned for a range of applications, enhance evaluation outcomes across different languages, and boost the availability of training datasets and benchmarks for researchers and developers alike. By sharing tools, methodologies, and intermediate results, transparency is upheld during the entire training process, fostering trust and collaboration within the AI community. Ultimately, OpenEuroLLM aims to pave the way for more inclusive and adaptable AI solutions that reflect the rich diversity of European languages and cultures.
  • 4
    Gemini 2.0 Flash Thinking Reviews
    Gemini 2.0 Flash Thinking is an innovative artificial intelligence model created by Google DeepMind, aimed at improving reasoning abilities through the clear articulation of its thought processes. This openness enables the model to address intricate challenges more efficiently while offering users straightforward insights into its decision-making journey. By revealing its internal reasoning, Gemini 2.0 Flash Thinking not only boosts performance but also enhances explainability, rendering it an essential resource for applications that necessitate a profound comprehension and confidence in AI-driven solutions. Furthermore, this approach fosters a deeper relationship between users and the technology, as it demystifies the workings of AI.
  • 5
    Gemini 2.0 Flash-Lite Reviews
    Gemini 2.0 Flash-Lite represents the newest AI model from Google DeepMind, engineered to deliver an affordable alternative while maintaining high performance standards. As the most budget-friendly option within the Gemini 2.0 range, Flash-Lite is specifically designed for developers and enterprises in search of efficient AI functions without breaking the bank. This model accommodates multimodal inputs and boasts an impressive context window of one million tokens, which enhances its versatility for numerous applications. Currently, Flash-Lite is accessible in public preview, inviting users to investigate its capabilities for elevating their AI-focused initiatives. This initiative not only showcases innovative technology but also encourages feedback to refine its features further.
  • 6
    Gemini 2.0 Pro Reviews
    Gemini 2.0 Pro stands as the pinnacle of Google DeepMind's AI advancements, engineered to master intricate tasks like programming and complex problem resolution. As it undergoes experimental testing, this model boasts an impressive context window of two million tokens, allowing for the efficient processing and analysis of extensive data sets. One of its most remarkable attributes is its ability to integrate effortlessly with external tools such as Google Search and code execution platforms, which significantly boosts its capacity to deliver precise and thorough answers. This innovative model signifies a major leap forward in artificial intelligence, equipping both developers and users with a formidable tool for addressing demanding challenges. Furthermore, its potential applications span various industries, making it a versatile asset in the evolving landscape of AI technology.
  • 7
    Inception Labs Reviews
    Inception Labs is at the forefront of advancing artificial intelligence through the development of diffusion-based large language models (dLLMs), which represent a significant innovation in the field by achieving performance that is ten times faster and costs that are five to ten times lower than conventional autoregressive models. Drawing inspiration from the achievements of diffusion techniques in generating images and videos, Inception's dLLMs offer improved reasoning abilities, error correction features, and support for multimodal inputs, which collectively enhance the generation of structured and precise text. This innovative approach not only boosts efficiency but also elevates the control users have over AI outputs. With its wide-ranging applications in enterprise solutions, academic research, and content creation, Inception Labs is redefining the benchmarks for speed and effectiveness in AI-powered processes. The transformative potential of these advancements promises to reshape various industries by optimizing workflows and enhancing productivity.
  • 8
    Hunyuan T1 Reviews
    Tencent has unveiled the Hunyuan T1, its advanced AI model, which is now accessible to all users via the Tencent Yuanbao platform. This model is particularly adept at grasping various dimensions and potential logical connections, making it ideal for tackling intricate challenges. Users have the opportunity to explore a range of AI models available on the platform, including DeepSeek-R1 and Tencent Hunyuan Turbo. Anticipation is building for the forthcoming official version of the Tencent Hunyuan T1 model, which will introduce external API access and additional services. Designed on the foundation of Tencent's Hunyuan large language model, Yuanbao stands out for its proficiency in Chinese language comprehension, logical reasoning, and effective task performance. It enhances user experience by providing AI-driven search, summaries, and writing tools, allowing for in-depth document analysis as well as engaging prompt-based dialogues. The platform's versatility is expected to attract a wide array of users seeking innovative solutions.
  • 9
    ERNIE X1 Reviews

    ERNIE X1

    Baidu

    $0.28 per 1M tokens
    ERNIE X1 represents a sophisticated conversational AI model created by Baidu within their ERNIE (Enhanced Representation through Knowledge Integration) lineup. This iteration surpasses earlier versions by enhancing its efficiency in comprehending and producing responses that closely resemble human interaction. Utilizing state-of-the-art machine learning methodologies, ERNIE X1 adeptly manages intricate inquiries and expands its capabilities to include not only text processing but also image generation and multimodal communication. Its applications are widespread in the realm of natural language processing, including chatbots, virtual assistants, and automation in enterprises, leading to notable advancements in precision, contextual awareness, and overall response excellence. The versatility of ERNIE X1 makes it an invaluable tool in various industries, reflecting the continuous evolution of AI technology.
  • 10
    Reka Flash 3 Reviews
    Reka Flash 3 is a cutting-edge multimodal AI model with 21 billion parameters, crafted by Reka AI to perform exceptionally well in tasks such as general conversation, coding, following instructions, and executing functions. This model adeptly handles and analyzes a myriad of inputs, including text, images, video, and audio, providing a versatile and compact solution for a wide range of applications. Built from the ground up, Reka Flash 3 was trained on a rich array of datasets, encompassing both publicly available and synthetic information, and it underwent a meticulous instruction tuning process with high-quality selected data to fine-tune its capabilities. The final phase of its training involved employing reinforcement learning techniques, specifically using the REINFORCE Leave One-Out (RLOO) method, which combined both model-based and rule-based rewards to significantly improve its reasoning skills. With an impressive context length of 32,000 tokens, Reka Flash 3 competes effectively with proprietary models like OpenAI's o1-mini, making it an excellent choice for applications requiring low latency or on-device processing. The model operates at full precision with a memory requirement of 39GB (fp16), although it can be efficiently reduced to just 11GB through the use of 4-bit quantization, demonstrating its adaptability for various deployment scenarios. Overall, Reka Flash 3 represents a significant advancement in multimodal AI technology, capable of meeting diverse user needs across multiple platforms.
  • 11
    Gemini 2.5 Flash Reviews
    Gemini 2.5 Flash is a high-performance AI model developed by Google to meet the needs of businesses requiring low-latency responses and cost-effective processing. Integrated into Vertex AI, it is optimized for real-time applications like customer support and virtual assistants, where responsiveness is crucial. Gemini 2.5 Flash features dynamic reasoning, which allows businesses to fine-tune the model's speed and accuracy to meet specific needs. By adjusting the "thinking budget" for each query, it helps companies achieve optimal performance without sacrificing quality.
  • 12
    Amazon Nova Micro Reviews
    Amazon Nova Micro is an advanced text-only AI model optimized for rapid language processing at a very low cost. With capabilities in reasoning, translation, and code completion, it offers over 200 tokens per second in response generation, making it suitable for fast-paced, real-time applications. Nova Micro supports fine-tuning with text inputs, and its efficiency in understanding and generating text makes it a cost-effective solution for AI-driven applications requiring high performance and quick outputs.
  • 13
    Amazon Nova Lite Reviews
    Amazon Nova Lite is a versatile AI model that supports multimodal inputs, including text, image, and video, and provides lightning-fast processing. It offers a great balance of speed, accuracy, and affordability, making it ideal for applications that need high throughput, such as customer engagement and content creation. With support for fine-tuning and real-time responsiveness, Nova Lite delivers high-quality outputs with minimal latency, empowering businesses to innovate at scale.
  • 14
    Amazon Nova Pro Reviews
    Amazon Nova Pro is a high-performance multimodal AI model that combines top-tier accuracy with fast processing and cost efficiency. It is perfect for use cases like video summarization, complex Q&A, code development, and executing multi-step AI workflows. Nova Pro supports text, image, and video inputs, allowing businesses to enhance customer interactions, content creation, and data analysis with AI. Its ability to perform well on industry benchmarks makes it suitable for enterprises aiming to streamline operations and drive automation.
  • 15
    BLOOM Reviews
    BLOOM is a sophisticated autoregressive language model designed to extend text based on given prompts, leveraging extensive text data and significant computational power. This capability allows it to generate coherent and contextually relevant content in 46 different languages, along with 13 programming languages, often making it difficult to differentiate its output from that of a human author. Furthermore, BLOOM's versatility enables it to tackle various text-related challenges, even those it has not been specifically trained on, by interpreting them as tasks of text generation. Its adaptability makes it a valuable tool for a range of applications across multiple domains.
  • 16
    NVIDIA NeMo Megatron Reviews
    NVIDIA NeMo Megatron serves as a comprehensive framework designed for the training and deployment of large language models (LLMs) that can range from billions to trillions of parameters. As a integral component of the NVIDIA AI platform, it provides a streamlined, efficient, and cost-effective solution in a containerized format for constructing and deploying LLMs. Tailored for enterprise application development, the framework leverages cutting-edge technologies stemming from NVIDIA research and offers a complete workflow that automates distributed data processing, facilitates the training of large-scale custom models like GPT-3, T5, and multilingual T5 (mT5), and supports model deployment for large-scale inference. The process of utilizing LLMs becomes straightforward with the availability of validated recipes and predefined configurations that streamline both training and inference. Additionally, the hyperparameter optimization tool simplifies the customization of models by automatically exploring the optimal hyperparameter configurations, enhancing performance for training and inference across various distributed GPU cluster setups. This approach not only saves time but also ensures that users can achieve superior results with minimal effort.
  • 17
    ALBERT Reviews
    ALBERT is a self-supervised Transformer architecture that undergoes pretraining on a vast dataset of English text, eliminating the need for manual annotations by employing an automated method to create inputs and corresponding labels from unprocessed text. This model is designed with two primary training objectives in mind. The first objective, known as Masked Language Modeling (MLM), involves randomly obscuring 15% of the words in a given sentence and challenging the model to accurately predict those masked words. This approach sets it apart from recurrent neural networks (RNNs) and autoregressive models such as GPT, as it enables ALBERT to capture bidirectional representations of sentences. The second training objective is Sentence Ordering Prediction (SOP), which focuses on the task of determining the correct sequence of two adjacent text segments during the pretraining phase. By incorporating these dual objectives, ALBERT enhances its understanding of language structure and contextual relationships. This innovative design contributes to its effectiveness in various natural language processing tasks.
  • 18
    ERNIE 3.0 Titan Reviews
    Pre-trained language models have made significant strides, achieving top-tier performance across multiple Natural Language Processing (NLP) applications. The impressive capabilities of GPT-3 highlight how increasing the scale of these models can unlock their vast potential. Recently, a comprehensive framework known as ERNIE 3.0 was introduced to pre-train large-scale models enriched with knowledge, culminating in a model boasting 10 billion parameters. This iteration of ERNIE 3.0 has surpassed the performance of existing leading models in a variety of NLP tasks. To further assess the effects of scaling, we have developed an even larger model called ERNIE 3.0 Titan, which consists of up to 260 billion parameters and is built on the PaddlePaddle platform. Additionally, we have implemented a self-supervised adversarial loss alongside a controllable language modeling loss, enabling ERNIE 3.0 Titan to produce texts that are both reliable and modifiable, thus pushing the boundaries of what these models can achieve. This approach not only enhances the model's capabilities but also opens new avenues for research in text generation and control.
  • 19
    EXAONE Reviews
    EXAONE is an advanced language model created by LG AI Research, designed to cultivate "Expert AI" across various fields. To enhance EXAONE's capabilities, the Expert AI Alliance was established, bringing together prominent companies from diverse sectors to collaborate. These partner organizations will act as mentors, sharing their expertise, skills, and data to support EXAONE in becoming proficient in specific domains. Much like a college student who has finished general courses, EXAONE requires further focused training to achieve true expertise. LG AI Research has already showcased EXAONE's potential through practical implementations, including Tilda, an AI human artist that made its debut at New York Fashion Week, and AI tools that summarize customer service interactions as well as extract insights from intricate academic papers. This initiative not only highlights the innovative applications of AI but also emphasizes the importance of collaborative efforts in advancing technology.
  • 20
    Jurassic-1 Reviews
    Jurassic-1 offers two model sizes, with the Jumbo variant being the largest at 178 billion parameters, representing the pinnacle of complexity in language models released for developers. Currently, AI21 Studio is in an open beta phase, inviting users to register and begin exploring Jurassic-1 through an accessible API and an interactive web platform. At AI21 Labs, our goal is to revolutionize how people engage with reading and writing by integrating machines as cognitive collaborators, a vision that requires collective effort to realize. Our exploration of language models dates back to what we refer to as our Mesozoic Era (2017 😉). Building upon this foundational research, Jurassic-1 marks the inaugural series of models we are now offering for broad public application. As we move forward, we are excited to see how users will leverage these advancements in their own creative processes.
  • 21
    Alpaca Reviews

    Alpaca

    Stanford Center for Research on Foundation Models (CRFM)

    Instruction-following models like GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have seen significant advancements in their capabilities, leading to a rise in their usage among individuals in both personal and professional contexts. Despite their growing popularity and integration into daily tasks, these models are not without their shortcomings, as they can sometimes disseminate inaccurate information, reinforce harmful stereotypes, and use inappropriate language. To effectively tackle these critical issues, it is essential for researchers and scholars to become actively involved in exploring these models further. However, conducting research on instruction-following models within academic settings has posed challenges due to the unavailability of models with comparable functionality to proprietary options like OpenAI’s text-DaVinci-003. In response to this gap, we are presenting our insights on an instruction-following language model named Alpaca, which has been fine-tuned from Meta’s LLaMA 7B model, aiming to contribute to the discourse and development in this field. This initiative represents a step towards enhancing the understanding and capabilities of instruction-following models in a more accessible manner for researchers.
  • 22
    GradientJ Reviews
    GradientJ offers a comprehensive suite of tools designed to facilitate the rapid development of large language model applications, ensuring their long-term management. You can explore and optimize your prompts by saving different versions and evaluating them against established benchmarks. Additionally, you can streamline the orchestration of intricate applications by linking prompts and knowledge sources into sophisticated APIs. Moreover, boosting the precision of your models is achievable through the incorporation of your unique data assets, thus enhancing overall performance. This platform empowers developers to innovate and refine their models continuously.
  • 23
    PanGu Chat Reviews
    Huawei has created an AI chatbot known as PanGu Chat, which is capable of engaging in human-like conversations and providing answers to inquiries in a manner similar to ChatGPT. This technology aims to enhance user interaction by simulating natural dialogue.
  • 24
    LTM-1 Reviews
    Magic’s LTM-1 technology facilitates context windows that are 50 times larger than those typically used in transformer models. As a result, Magic has developed a Large Language Model (LLM) that can effectively process vast amounts of contextual information when providing suggestions. This advancement allows our coding assistant to access and analyze your complete code repository. With the ability to reference extensive factual details and their own prior actions, larger context windows can significantly enhance the reliability and coherence of AI outputs. We are excited about the potential of this research to further improve user experience in coding assistance applications.
  • 25
    Reka Reviews
    Our advanced multimodal assistant is meticulously crafted with a focus on privacy, security, and operational efficiency. Yasa is trained to interpret various forms of content, including text, images, videos, and tabular data, with plans to expand to additional modalities in the future. It can assist you in brainstorming for creative projects, answering fundamental questions, or extracting valuable insights from your internal datasets. With just a few straightforward commands, you can generate, train, compress, or deploy it on your own servers. Our proprietary algorithms enable you to customize the model according to your specific data and requirements. We utilize innovative techniques that encompass retrieval, fine-tuning, self-supervised instruction tuning, and reinforcement learning to optimize our model based on your unique datasets, ensuring that it meets your operational needs effectively. In doing so, we aim to enhance user experience and deliver tailored solutions that drive productivity and innovation.