Best Large Language Models for Deasie

Find and compare the best Large Language Models for Deasie in 2025

Use the comparison tool below to compare the top Large Language Models for Deasie on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    OpenAI Reviews
    OpenAI's mission, which is to ensure artificial general intelligence (AGI), benefits all people. This refers to highly autonomous systems that outperform humans in most economically valuable work. While we will try to build safe and useful AGI, we will also consider our mission accomplished if others are able to do the same. Our API can be used to perform any language task, including summarization, sentiment analysis and content generation. You can specify your task in English or use a few examples. Our constantly improving AI technology is available to you with a simple integration. These sample completions will show you how to integrate with the API.
  • 2
    Claude Reviews
    Claude is an artificial intelligence language model that can generate text with human-like processing. Anthropic is an AI safety company and research firm that focuses on building reliable, interpretable and steerable AI systems. While large, general systems can provide significant benefits, they can also be unpredictable, unreliable and opaque. Our goal is to make progress in these areas. We are currently focusing on research to achieve these goals. However, we see many opportunities for our work in the future to create value both commercially and for the public good.
  • 3
    Llama 3 Reviews
    Meta AI is our intelligent assistant that allows people to create, connect and get things done. We've integrated Llama 3. Meta AI can be used to code and solve problems, allowing you to see the performance of Llama 3. Llama 3, in 8B or 70B, will give you the flexibility and capabilities you need to create your ideas, whether you're creating AI-powered agents or other applications. We've updated our Responsible Use Guide (RUG), to provide the most comprehensive and up-to-date information on responsible development using LLMs. Our system-centric approach includes updates for our trust and security tools, including Llama Guard 2 optimized to support MLCommons' newly announced taxonomy, code shield and Cybersec Evaluation 2.
  • 4
    Llama 3.1 Reviews
    Open source AI model that you can fine-tune and distill anywhere. Our latest instruction-tuned models are available in 8B 70B and 405B version. Our open ecosystem allows you to build faster using a variety of product offerings that are differentiated and support your use cases. Choose between real-time or batch inference. Download model weights for further cost-per-token optimization. Adapt to your application, improve using synthetic data, and deploy on-prem. Use Llama components and extend the Llama model using RAG and zero shot tools to build agentic behavior. Use 405B high-quality data to improve specialized model for specific use cases.
  • 5
    Llama 3.2 Reviews
    There are now more versions of the open-source AI model that you can refine, distill and deploy anywhere. Choose from 1B or 3B, or build with Llama 3. Llama 3.2 consists of a collection large language models (LLMs), which are pre-trained and fine-tuned. They come in sizes 1B and 3B, which are multilingual text only. Sizes 11B and 90B accept both text and images as inputs and produce text. Our latest release allows you to create highly efficient and performant applications. Use our 1B and 3B models to develop on-device applications, such as a summary of a conversation from your phone, or calling on-device features like calendar. Use our 11B and 90B models to transform an existing image or get more information from a picture of your surroundings.
  • 6
    Llama 3.3 Reviews
    Llama 3.3, the latest in the Llama language model series, was developed to push the limits of AI-powered communication and understanding. Llama 3.3, with its enhanced contextual reasoning, improved generation of language, and advanced fine tuning capabilities, is designed to deliver highly accurate responses across diverse applications. This version has a larger dataset for training, refined algorithms to improve nuanced understanding, and reduced biases as compared to previous versions. Llama 3.3 excels at tasks such as multilingual communication, technical explanations, creative writing and natural language understanding. It is an indispensable tool for researchers, developers and businesses. Its modular architecture enables customization in specialized domains and ensures performance at scale.
  • 7
    Llama 2 Reviews
    The next generation of the large language model. This release includes modelweights and starting code to pretrained and fine tuned Llama languages models, ranging from 7B-70B parameters. Llama 1 models have a context length of 2 trillion tokens. Llama 2 models have a context length double that of Llama 1. The fine-tuned Llama 2 models have been trained using over 1,000,000 human annotations. Llama 2, a new open-source language model, outperforms many other open-source language models in external benchmarks. These include tests of reasoning, coding and proficiency, as well as knowledge tests. Llama 2 has been pre-trained using publicly available online data sources. Llama-2 chat, a fine-tuned version of the model, is based on publicly available instruction datasets, and more than 1 million human annotations. We have a wide range of supporters in the world who are committed to our open approach for today's AI. These companies have provided early feedback and have expressed excitement to build with Llama 2
  • 8
    Llama Reviews
    Llama (Large Language Model meta AI) is a state of the art foundational large language model that was created to aid researchers in this subfield. Llama allows researchers to use smaller, more efficient models to study these models. This further democratizes access to this rapidly-changing field. Because it takes far less computing power and resources than large language models, such as Llama, to test new approaches, validate other's work, and explore new uses, training smaller foundation models like Llama can be a desirable option. Foundation models are trained on large amounts of unlabeled data. This makes them perfect for fine-tuning for many tasks. We make Llama available in several sizes (7B-13B, 33B and 65B parameters), and also share a Llama card that explains how the model was built in line with our Responsible AI practices.
  • Previous
  • You're on page 1
  • Next