Best Free Graph Databases of 2025

Use the comparison tool below to compare the top Free Graph Databases on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Redis Reviews
    Redis Labs is the home of Redis. Redis Enterprise is the best Redis version. Redis Enterprise is more than a cache. Redis Enterprise can be free in the cloud with NoSQL and data caching using the fastest in-memory database. Redis can be scaled, enterprise-grade resilience, massive scaling, ease of administration, and operational simplicity. Redis in the Cloud is a favorite of DevOps. Developers have access to enhanced data structures and a variety modules. This allows them to innovate faster and has a faster time-to-market. CIOs love the security and expert support of Redis, which provides 99.999% uptime. Use relational databases for active-active, geodistribution, conflict distribution, reads/writes in multiple regions to the same data set. Redis Enterprise offers flexible deployment options. Redis Labs is the home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.
  • 2
    Apache Cassandra Reviews

    Apache Cassandra

    Apache Software Foundation

    1 Rating
    The Apache Cassandra database provides high availability and scalability without compromising performance. It is the ideal platform for mission-critical data because it offers linear scalability and demonstrated fault-tolerance with commodity hardware and cloud infrastructure. Cassandra's ability to replicate across multiple datacenters is first-in-class. This provides lower latency for your users, and the peace-of-mind that you can withstand regional outages.
  • 3
    Stardog Reviews

    Stardog

    Stardog Union

    $0
    Data engineers and scientists can be 95% better at their jobs with ready access to the most flexible semantic layer, explainable AI and reusable data modelling. They can create and expand semantic models, understand data interrelationships, and run federated query to speed up time to insight. Stardog's graph data virtualization and high performance graph database are the best available -- at a price that is up to 57x less than competitors -- to connect any data source, warehouse, or enterprise data lakehouse without copying or moving data. Scale users and use cases at a lower infrastructure cost. Stardog's intelligent inference engine applies expert knowledge dynamically at query times to uncover hidden patterns and unexpected insights in relationships that lead to better data-informed business decisions and outcomes.
  • 4
    Fauna Reviews
    Fauna is a data API that supports rich clients with serverless backends. It provides a web-native interface that supports GraphQL, custom business logic, frictionless integration to the serverless ecosystem, and a multi-cloud architecture that you can trust and grow with.
  • 5
    Graphlytic Reviews

    Graphlytic

    Demtec

    19 EUR/month
    Graphlytic is a web-based BI platform that allows knowledge graph visualization and analysis. Interactively explore the graph and look for patterns using the Cypher query language or query templates for non-technical users. Users can also use filters to find answers to any graph question. The graph visualization provides deep insights into industries such as scientific research and anti-fraud investigation. Even users with little knowledge of graph theory can quickly explore the data. Cytoscape.js allows graph rendering. It can render tens to thousands of nodes and hundreds upon thousands of relationships. The application is available in three formats: Desktop, Cloud, or Server. Graphlytic Desktop is a Neo4j Desktop app that can be installed in just a few mouse clicks. Cloud instances are great for small teams who don't want or need to worry about installing and need to be up and running quickly.
  • 6
    InfiniteGraph Reviews
    InfiniteGraph is a massively scalable graph database specifically designed to excel at high-speed ingest of massive volumes of data (billions of nodes and edges per hour) while supporting complex queries. InfiniteGraph can seamlessly distribute connected graph data across a global enterprise. InfiniteGraph is a schema-based graph database that supports highly complex data models. It also has an advanced schema evolution capability that allows you to modify and evolve the schema of an existing database. InfiniteGraph’s Placement Management Capability allows you to optimize the placement of data items resulting in tremendous performance improvements in both query and ingest. InfiniteGraph has client-side caching which caches frequently used node and edges. This can allow InfiniteGraph to perform like an in-memory graph database. InfiniteGraph's DO query language enables complex "beyond graph" queries not supported by other graph databases.
  • 7
    GraphDB Reviews
    *GraphDB allows the creation of large knowledge graphs by linking diverse data and indexing it for semantic search. * GraphDB is a robust and efficient graph database that supports RDF and SPARQL. The GraphDB database supports a highly accessible replication cluster. This has been demonstrated in a variety of enterprise use cases that required resilience for data loading and query answering. Visit the GraphDB product page for a quick overview and a link to download the latest releases. GraphDB uses RDF4J to store and query data. It also supports a wide range of query languages (e.g. SPARQL and SeRQL), and RDF syntaxes such as RDF/XML and Turtle.
  • 8
    Memgraph Reviews
    Memgraph offers a light and powerful graph platform comprising the Memgraph Graph Database, MAGE Library, and Memgraph Lab Visualization. Memgraph is a dynamic, lightweight graph database optimized for analyzing data, relationships, and dependencies quickly and efficiently. It comes with a rich suite of pre-built deep path traversal algorithms and a library of traditional, dynamic, and ML algorithms tailored for advanced graph analysis, making Memgraph an excellent choice in critical decision-making scenarios such as risk assessment (fraud detection, cybersecurity threat analysis, and criminal risk assessment), 360-degree data and network exploration (Identity and Access Management (IAM), Master Data Management (MDM), Bill of Materials (BOM)), and logistics and network optimization. Memgraph's vibrant open-source community brings together over 150,000 developers in more than 100 countries to exchange ideas and optimize the next generation of in-memory data-driven applications across GenAI/ LLMs and real-time analytics performed with streaming data.
  • 9
    Fluree Reviews
    Fluree is an immutable RDF graph database written in Clojure and adhering to W3C standards, supporting JSON and JSON-LD while accommodating various RDF ontologies. It operates with an immutable ledger that secures transactions with cryptographic integrity, alongside a rich RDF graph database capable of various queries. It employs SmartFunctions for enforcing data management rules, including identity and access management and data quality. Additionally, It boasts a scalable, cloud-native architecture utilizing a lightweight Java runtime, with individually scalable ledger and graph database components, embodying a "Data-Centric" ideology that treats data as a reusable asset independent of singular applications.
  • 10
    RecallGraph Reviews
    RecallGraph is a versioned graph data store. It retains all changes its data (vertices, edges) have undergone to get to their current state. It supports point-in time graph traversals that allow the user to query any past state of a graph as well as the present. RecallGraph can be used in situations where data is best represented using a network of edges and vertices (i.e., as a graph). 1. Both edges and vertices can contain properties in the form attribute/value pairs (equivalent of JSON objects). 2. Documents (vertices/edges), can change throughout their lives (both in their individual attributes/values as well as in their relationships to each other). 3. Documents from the past are just as important as their current states, so it is essential to retain and queryable their change history. Also see this blog post for an intro - https://blog.recallgraph.tech/never-lose-your-old-data-again.
  • 11
    data.world Reviews

    data.world

    data.world

    $12 per month
    data.world is a fully managed cloud service that was built for modern data architectures. We handle all updates, migrations, maintenance. It is easy to set up with our large and growing network of pre-built integrations, including all the major cloud data warehouses. Your team must solve real business problems and not struggle with complicated data software when time-to value is important. data.world makes it simple for everyone, not just the "data people", to get clear, precise, and fast answers to any business question. Our cloud-native data catalog maps siloed, distributed data to consistent business concepts, creating an unified body of knowledge that anyone can understand, use, and find. Data.world is the home of the largest open data community in the world. It is where people come together to work on everything, from data journalism to social bot detection.
  • 12
    Apache TinkerPop Reviews

    Apache TinkerPop

    Apache Software Foundation

    Free
    Apache TinkerPop™, a graph computing framework, is available for graph databases (OLTP), and graph analytic system (OLAP). Apache TinkerPop's graph traversal language is Gremlin. Gremlin allows users to express complex traversals (or queries) on their application's property diagram in a concise, data-flow language. Each Gremlin traversal consists of a sequence (potentially nested). A graph is a structure that is composed of vertices or edges. Each edge and vertices can have an unlimited number of key/value pairs, called properties. Vertices can be used to denote discrete objects, such as a person or a place or an event. Edges denote relationships between vertices. A person might know another person, be involved in an event, or have been to a specific place recently. If a domain contains a heterogeneous set objects (vertices), that can be linked to one another in many ways (edges), it is called a domain.
  • 13
    ArcadeDB Reviews
    ArcadeDB allows you to manage complex models without any compromises. Polyglot Persistence is gone. There is no need to have multiple databases. ArcadeDB Multi-Model databases can store graphs and documents, key values, time series, and key values. Each model is native to the database engine so you don't need to worry about translations slowing down your computer. ArcadeDB's engine was developed with Alien Technology. It can crunch millions upon millions of records per second. ArcadeDB's traversing speed does not depend on the size of the database. It doesn't matter if your database contains a few records or a billion. ArcadeDB can be used as an embedded database on a single server. It can scale up by using Kubernetes to connect multiple servers. It is flexible enough to run on any platform that has a small footprint. Your data is protected. Our unbreakable fully transactional engine ensures durability for mission-critical production database databases. ArcadeDB uses the Raft Consensus Algorithm in order to maintain consistency across multiple servers.
  • 14
    PuppyGraph Reviews
    PuppyGraph allows you to query multiple data stores in a single graph model. Graph databases can be expensive, require months of setup, and require a dedicated team. Traditional graph databases struggle to handle data beyond 100GB and can take hours to run queries with multiple hops. A separate graph database complicates architecture with fragile ETLs, and increases your total cost ownership (TCO). Connect to any data source, anywhere. Cross-cloud and cross region graph analytics. No ETLs are required, nor is data replication. PuppyGraph allows you to query data as a graph directly from your data lakes and warehouses. This eliminates the need for time-consuming ETL processes that are required with a traditional graph databases setup. No more data delays or failed ETL processes. PuppyGraph eliminates graph scaling issues by separating computation from storage.
  • 15
    AllegroGraph Reviews
    AllegroGraph is a revolutionary solution that allows infinite data integration. It uses a patented approach that unifies all data and siloed information into an Entity Event Knowledge Graph solution that supports massive big data analytics. AllegroGraph uses unique federated sharding capabilities to drive 360-degree insights, and enable complex reasoning across a distributed Knowledge Graph. AllegroGraph offers users an integrated version Gruff, a browser-based graph visualization tool that allows you to explore and discover connections within enterprise Knowledge Graphs. Franz's Knowledge Graph Solution offers both technology and services to help build industrial strength Entity Event Knowledge Graphs. It is based on the best-of-class products, tools, knowledge, skills, and experience.
  • 16
    Neo4j Reviews
    Neo4j's graph platform is designed to help you leverage data and data relationships. Developers can create intelligent applications that use Neo4j to traverse today's interconnected, large datasets in real-time. Neo4j's graph database is powered by a native graph storage engine and processing engine. It provides unique, actionable insights through an intuitive, flexible, and secure database.
  • 17
    Azure Cosmos DB Reviews
    Azure Cosmos DB, a fully managed NoSQL databank service, is designed for modern app development. It offers guaranteed single-digit millisecond response time and 99.999 percent availability. This service is backed by SLAs and instant scalability. Open source APIs for MongoDB or Cassandra are also available. With turnkey multi-master global distribution, you can enjoy fast writes and readings from anywhere in the world.
  • 18
    Titan Reviews
    Titan is a graph database that can store and query graphs with hundreds of billions of edges and vertices distributed across a multi-machine cluster. Titan is a transactional database which can handle thousands of concurrent users performing complex graph traversals in real-time. For a growing user and data base, you can use linear and elastic scaling. Data replication and data distribution for performance and fault tolerance. Hot backups and high availability for multi-datacenters Support for ACID, eventual consistency and other storage backends. Support for Apache Cassandra and Apache HBase storage backends, as well as Oracle BerkeleyDB. Integration with big data platforms such as Apache Spark, Apache Giraph, and Apache Hadoop allows for global graph data analytics, reporting and ETL. Native integration with TinkerPop graph stack to support Gremlin's graph query language, Gremlin's graph server, and Gremlin apps.
  • 19
    Cayley Reviews
    Cayley is an open source database for Linked Data. It was inspired by Google's Knowledge Graph graph database (formerly Freebase). Cayley is an open source graph database that allows you to store complex data and makes it easy to use. Built-in query editor, visualizer, and REPL. Cayley supports multiple query languages, including Gizmo, a query engine inspired by Gremlin and GraphQL-inspired query languages, MQL, a simplified version for Freebase lovers, and MQL. Cayley is modular and easy to connect with your favorite programming languages. It can also be used by back-end stores. Cayley has been well tested and used by many companies for their production workloads. It is also fast and optimized for use in applications. Rough performance testing has shown that on 2014 consumer hardware, 134m quads of LevelDB are not a problem, and a multi-hop intersection query - films starring X or Y - takes 150ms. Cayley is set up to run in memory by default (that's what backendmemstore means).
  • 20
    GUN Reviews
    Realtime, realtime, offline-first, graph database engine. You can store, load, and share the data you need in your app without worrying too much about servers, network calls, database access, or tracking offline changes. GUN is a simple, fast, and easy-to-use data sync and storage tool that runs wherever JavaScript does. GUN's goal is to let you concentrate on the data that must be stored, loaded, shared, and shared in your app. It doesn't need to worry about servers, database calls, tracking offline changes, concurrency conflicts, or monitoring network calls. This allows you to quickly build cool apps. GUN gives you the most powerful tools of the internet, decentralization and privacy. This allows you to reclaim the web and make the internet truly open and free. GUN is a database engine which runs on all JavaScript devices, including mobile devices and servers. It allows you to create the data system that you want.
  • 21
    Blazegraph Reviews
    Blazegraph™, a graph database that supports Blueprints and RDF/SPARQL, is an ultra-high-performance graph database. It can support up to 50 Billion edges per machine. It is currently in production for Fortune 500 customers like EMC, Autodesk, among others. It supports key Precision Medicine applications, and is widely used for life sciences applications. It is extensively used to support Cyber analytics in government and commercial applications. It powers Wikidata Query Service, a Wikimedia Foundation project. You can choose an executable jar, war file, or tar.gz distribution. Blazegraph was designed to be simple to use and easy to get started. This is why it ships without SSL and authentication by default. We strongly recommend that you enable SSL, authentication and the appropriate network configurations for production deployments. Below are some useful links to help you do this.
  • 22
    Apache Giraph Reviews

    Apache Giraph

    Apache Software Foundation

    Apache Giraph, an iterative graph processing platform, is designed for high scalability. It is currently used by Facebook to analyze the social network formed by users and their relationships. Giraph was originally developed as an open-source alternative to Pregel, a graph processing architecture that Google created and was described in a 2010 paper. Both systems are inspired from the Bulk Synchronous Parallel model for distributed computation, which Leslie Valiant introduced. Giraph has many additional features to the Pregel model. These include master computation, sharded aggregaters, edge-oriented in, out-of core computation, and more. Giraph has a steady development cycle, a growing user base worldwide, and is an ideal choice to unleash the potential of structured data on a large scale. Apache Giraph is an iterative graph processing framework built on Apache Hadoop.
  • 23
    Grakn Reviews
    The database is the foundation of intelligent systems. Grakn is an intelligent database, a knowledge graph. A data schema that is intuitive and expressive. It can be used to create rich knowledge models by defining hierarchies, hyperentities, hyperrelations, rules, and constructs. Intelligent language that infers data types, relationships and attributes, as well as complex patterns, at runtime and with persistent and distributed data. Accessible through simple queries, out-of-the box distributed analytics (Pregel & MapReduce), are available through the language. Strong abstraction allows for simpler expressions of complex constructs while the system determines the best query execution. Grakn KGMS & Workbase allow you to scale your enterprise Knowledge Graph. A distributed database that can scale across a network of computers by partitioning and replicating.
  • 24
    HyperGraphDB Reviews
    HyperGraphDB is an open-source, general-purpose data storage system that uses a powerful knowledge management approach called directed hypergraphs. Although it is a persistent memory model, it can also serve as an embedded object-oriented data base for Java projects of any size. Or a graph database or a (non SQLL) relational database. HyperGraphDB is a storage system that uses generalized hypergraphs for its underlying data model. A tuple is a collection of 0 or more tuples. Each atom is a tuple of this type. The data model can be viewed as either relational, where higher-order, non-ary relationships are permitted, or graph-oriented where edges point to an arbitrary set nodes. Each atom is assigned a strongly-typed, arbitrary value. The hypergraph that manages these values is embedded in the type system and can be customized from the ground up.
  • 25
    HugeGraph Reviews
    HugeGraph is a high-speed, highly-scalable graph database. HugeGraph's excellent OLTP capability allows for the storage and querying of billions of edges and vertices. Gremlin, a powerful graph traversal and query language, can handle complex graph queries in compliance with Apache TinkerPop 3. It supports Gremlin and is compliant to Apache TinkerPop 3. Schema Metadata Management includes VertexLabel EdgeLabel PropertyKey and IndexLabel. Multi-type Indexes that support complex combination queries, range query, and exact query. Plug-in Backend Store Driver Framework. Supports RocksDB, Cassandra and ScyllaDB. It is easy to add another backend store driver if necessary. Integration with Hadoop/Spark. HugeGraph is built on the TinkerPop framework. We refer to the storage structure and schema definition of DataStax.
  • Previous
  • You're on page 1
  • 2
  • Next