Best Fuzz Testing Tools for Python

Find and compare the best Fuzz Testing tools for Python in 2025

Use the comparison tool below to compare the top Fuzz Testing tools for Python on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Peach Fuzzer Reviews

    Peach Fuzzer

    Peach Tech

    Free
    Peach is an advanced SmartFuzzer that excels in both generation and mutation-based fuzzing techniques. It necessitates the creation of Peach Pit files, which outline the data's structure, type information, and interrelations for effective fuzzing. In addition, Peach provides customizable configurations for a fuzzing session, such as selecting a data transport (publisher) and logging interface. Since its inception in 2004, Peach has undergone continuous development and is currently in its third major iteration. Fuzzing remains one of the quickest methods to uncover security vulnerabilities and identify bugs in software. By utilizing Peach for hardware fuzzing, students will gain insights into the essential principles of device fuzzing. Designed to address any data consumer, Peach can be applied to servers as well as embedded devices. A wide array of users, including researchers, companies, and government agencies, leverage Peach to detect hardware vulnerabilities. This course will specifically concentrate on employing Peach to target embedded devices while also gathering valuable information in case of a device crash, thus enhancing the understanding of fuzzing techniques in practical scenarios.
  • 2
    Tayt Reviews

    Tayt

    Crytic

    Free
    Tayt serves as a fuzzer specifically designed for StarkNet smart contracts. It is advisable to utilize a Python virtual environment for this purpose. Upon initiation, users will be presented with the properties that need verification alongside the external functions employed to create a series of transactions. If any property is found to be violated, a detailed call sequence will be displayed, listing the order of function invocations, the arguments provided, the address of the caller, and any events triggered. Additionally, Tayt allows users to evaluate contracts that are capable of deploying other contracts, enhancing its utility in smart contract testing. This capability makes it an essential tool for developers looking to ensure the robustness and security of their smart contract implementations.
  • 3
    Google OSS-Fuzz Reviews
    OSS-Fuzz provides ongoing fuzz testing for open source applications, a method renowned for identifying programming flaws. Such flaws, including buffer overflow vulnerabilities, can pose significant security risks. Through the implementation of guided in-process fuzzing on Chrome components, Google has discovered thousands of security weaknesses and stability issues, and now aims to extend this beneficial service to the open source community. The primary objective of OSS-Fuzz is to enhance the security and stability of frequently used open source software by integrating advanced fuzzing methodologies with a scalable and distributed framework. For projects that are ineligible for OSS-Fuzz, there are alternatives available, such as running personal instances of ClusterFuzz or ClusterFuzzLite. At present, OSS-Fuzz is compatible with languages including C/C++, Rust, Go, Python, and Java/JVM, with the possibility of supporting additional languages that are compatible with LLVM. Furthermore, OSS-Fuzz facilitates fuzzing for both x86_64 and i386 architecture builds, ensuring a broad range of applications can benefit from this innovative testing approach. With this initiative, we hope to build a safer software ecosystem for all users.
  • 4
    american fuzzy lop Reviews
    American fuzzy lop is a security-focused fuzzer that utilizes a unique form of compile-time instrumentation along with genetic algorithms to automatically generate effective test cases that can uncover new internal states within the targeted binary. This approach significantly enhances the functional coverage of the code being fuzzed. Additionally, the compact and synthesized test cases produced by the tool can serve as a valuable resource for initiating other, more demanding testing processes in the future. Unlike many other instrumented fuzzers, afl-fuzz is engineered for practicality, boasting a minimal performance overhead while employing a diverse array of effective fuzzing techniques and strategies for minimizing effort. It requires almost no setup and can effortlessly manage complicated, real-world scenarios, such as those found in common image parsing or file compression libraries. As an instrumentation-guided genetic fuzzer, it excels at generating complex file semantics applicable to a wide variety of challenging targets, making it a versatile choice for security testing. Its ability to adapt to different environments further enhances its appeal for developers seeking robust solutions.
  • 5
    Boofuzz Reviews

    Boofuzz

    Boofuzz

    Free
    Boofuzz represents a continuation and enhancement of the established Sulley fuzzing framework. In addition to a variety of bug fixes, Boofuzz emphasizes extensibility and flexibility. Mirroring Sulley, it integrates essential features of a fuzzer, such as rapid data generation, instrumentation, failure detection, and the ability to reset targets after a failure, along with the capability to log test data effectively. It offers a more streamlined installation process and accommodates diverse communication mediums. Furthermore, it includes built-in capabilities for serial fuzzing, as well as support for Ethernet, IP-layer, and UDP broadcasting. The improvements in data recording are notable, providing consistency, clarity, and thoroughness in the results. Users benefit from the ability to export test results in CSV format and enjoy extensible instrumentation and failure detection options. Boofuzz operates as a Python library that facilitates the creation of fuzzer scripts, and setting it up within a virtual environment is highly advisable for optimal performance and organization. This attention to detail and user experience makes Boofuzz a powerful tool for security testing.
  • 6
    ToothPicker Reviews

    ToothPicker

    Secure Mobile Networking Lab

    Free
    ToothPicker serves as an innovative in-process, coverage-guided fuzzer specifically designed for iOS, focusing on the Bluetooth daemon and various Bluetooth protocols. Utilizing FRIDA as its foundation, this tool can be tailored to function on any platform compatible with FRIDA. The repository also features an over-the-air fuzzer that showcases an example implementation for fuzzing Apple's MagicPairing protocol through InternalBlue. Furthermore, it includes the ReplayCrashFile script, which aids in confirming any crashes identified by the in-process fuzzer. This simple fuzzer operates by flipping bits and bytes in inactive connections, lacking coverage or injection, yet it serves effectively as a demonstration and is stateful. It requires only Python and Frida to operate, eliminating the need for additional modules or installations. Built upon the frizzer codebase, it's advisable to establish a virtual Python environment for optimal performance with frizzer. Notably, with the introduction of the iPhone XR/Xs, the PAC (Pointer Authentication Code) feature has been implemented. This advancement underscores the necessity for continuous adaptation of fuzzing tools like ToothPicker to keep pace with evolving iOS security measures.
  • 7
    Fuzzbuzz Reviews

    Fuzzbuzz

    Fuzzbuzz

    Free
    The Fuzzbuzz workflow closely resembles other continuous integration and continuous delivery (CI/CD) testing processes, but it stands out because it necessitates the concurrent execution of multiple jobs, adding several additional steps. As a dedicated fuzz testing platform, Fuzzbuzz simplifies the integration of fuzz tests into developers' code, enabling them to execute these tests within their CI/CD pipelines, which is essential for identifying critical bugs and security vulnerabilities before they reach production. Fuzzbuzz seamlessly blends into your existing environment, providing support from the terminal through to CI/CD. You can easily write a fuzz test using your preferred IDE, terminal, or build tools, and once you push your code changes to CI/CD, Fuzzbuzz will automatically initiate the fuzz testing process on the latest updates. You'll receive notifications about any bugs detected through various channels like Slack, GitHub, or email, ensuring you're always informed. Additionally, as new changes are introduced, regressions are automatically tested and compared against previous results, allowing for continuous monitoring of code stability. The moment a change is detected, Fuzzbuzz builds and instruments your code, ensuring that your development process remains efficient and responsive. This proactive approach helps maintain high-quality code and reduces the risk of deploying flawed software.
  • 8
    BFuzz Reviews

    BFuzz

    RootUp

    Free
    BFuzz is a tool designed for input-based fuzzing that utilizes HTML as its source input, launching a new instance of your browser to execute various test cases created by the domato generator located in the recurve directory. In addition, BFuzz automates the process by repeatedly performing the same operations without altering any of the test cases. When you run BFuzz, it prompts you to choose between fuzzing Chrome or Firefox; however, it specifically opens Firefox from the recurve directory and generates logs in the terminal. This lightweight script facilitates the opening of a browser and the execution of test cases, which are systematically generated by the domato tool and include the main scripting functionality. Furthermore, the script incorporates supplementary helper code that is essential for effective DOM fuzzing, enhancing the overall testing process. Its streamlined design makes it an efficient choice for developers looking to perform thorough web application testing.
  • 9
    Sulley Reviews

    Sulley

    OpenRCE

    Free
    Sulley is a comprehensive fuzz testing framework and engine that incorporates various extensible components. In my view, it surpasses the functionality of most previously established fuzzing technologies, regardless of whether they are commercial or available in the public domain. The framework is designed to streamline not only the representation of data but also its transmission and instrumentation processes. As a fully automated fuzzing solution developed entirely in Python, Sulley operates without requiring human intervention. Beyond impressive capabilities in data generation, Sulley offers a range of essential features expected from a contemporary fuzzer. It meticulously monitors network activity and keeps detailed records for thorough analysis. Additionally, Sulley is equipped to instrument and evaluate the health of the target system, with the ability to revert to a stable state using various methods when necessary. It efficiently detects, tracks, and categorizes faults that arise during testing. Furthermore, Sulley has the capability to perform fuzzing in parallel, which dramatically enhances testing speed. It can also autonomously identify unique sequences of test cases that lead to faults, thereby improving the overall effectiveness of the testing process. This combination of features positions Sulley as a powerful tool for security testing and vulnerability detection.
  • 10
    APIFuzzer Reviews
    APIFuzzer analyzes your API specifications and systematically tests the fields to ensure your application can handle modified parameters, all without the need for programming. It allows you to import API definitions from either local files or remote URLs, supporting both JSON and YAML formats. Every HTTP method is accommodated, and it can fuzz the request body, query strings, path parameters, and request headers. Utilizing random mutations, it also integrates seamlessly with continuous integration systems. The tool can produce test reports in JUnit XML format and has the capability to send requests to alternative URLs. It supports HTTP basic authentication through configuration settings and stores reports of any failed tests in JSON format within a designated folder, thus ensuring that all results are easily accessible for review. Additionally, this enhances your ability to identify vulnerabilities and improve the reliability of your API.
  • 11
    Atheris Reviews

    Atheris

    Google

    Free
    Atheris is a Python fuzzing engine guided by coverage, designed to test both Python code and native extensions developed for CPython. It is built on the foundation of libFuzzer, providing an effective method for identifying additional bugs when fuzzing native code. Atheris is compatible with Linux (both 32- and 64-bit) and Mac OS X, supporting Python versions ranging from 3.6 to 3.10. Featuring an integrated libFuzzer, it is well-suited for fuzzing Python applications, but when targeting native extensions, users may need to compile from source to ensure compatibility between the libFuzzer version in Atheris and their Clang installation. Since Atheris depends on libFuzzer, which is a component of Clang, users of Apple Clang will need to install a different version of LLVM, as the default does not include libFuzzer. The implementation of Atheris as a coverage-guided, mutation-based fuzzer (LibFuzzer) simplifies the setup process by eliminating the need for input grammar definition. However, this approach can complicate the generation of inputs for code that processes intricate data structures. Consequently, while Atheris offers ease of use in many scenarios, it may face challenges when dealing with more complex parsing requirements.
  • 12
    Wfuzz Reviews

    Wfuzz

    Wfuzz

    Free
    Wfuzz offers a powerful platform for automating the assessment of web application security, assisting users in identifying and exploiting potential vulnerabilities to enhance the safety of their web applications. Additionally, it can be executed using the official Docker image for convenience. The core functionality of Wfuzz is based on the straightforward principle of substituting any occurrence of the fuzz keyword with a specified payload, which serves as a source of data. This fundamental mechanism enables users to inject various inputs into any field within an HTTP request, facilitating intricate attacks on diverse components of web applications, including parameters, authentication mechanisms, forms, directories and files, headers, and more. Wfuzz's scanning capabilities for web application vulnerabilities are further enhanced by its plugin support, which allows for a wide range of functionalities. As a completely modular framework, Wfuzz invites even novice Python developers to contribute easily, as creating plugins is a straightforward process that requires only a few minutes to get started. By harnessing the power of Wfuzz, security professionals can significantly improve their web application defenses.
  • 13
    Mayhem Code Security Reviews
    Every minute, a multitude of autonomously generated tests is executed to identify vulnerabilities and facilitate swift remediation. Mayhem eliminates uncertainty surrounding untested code by autonomously creating test suites that yield practical outcomes. There is no requirement to recompile the code, as Mayhem operates seamlessly with dockerized images. Its self-learning machine learning technology continuously executes thousands of tests each second, searching for crashes and defects, allowing developers to concentrate on enhancing features. Background continuous testing detects new defects and expands code coverage effectively. For each defect identified, Mayhem provides a detailed reproduction and backtrace, prioritizing them according to your risk assessment. Users can view all results, organized and prioritized based on immediate needs for fixes. Mayhem integrates effortlessly into your existing development tools and build pipeline, granting developers access to actionable insights regardless of the programming language or tools utilized by the team. This adaptability ensures that teams can maintain their workflow without disruption while enhancing their code quality.
  • Previous
  • You're on page 1
  • Next