Best ETL Software for dbt

Find and compare the best ETL software for dbt in 2025

Use the comparison tool below to compare the top ETL software for dbt on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Snowflake Reviews

    Snowflake

    Snowflake

    $40.00 per month
    4 Ratings
    Your cloud data platform. Access to any data you need with unlimited scalability. All your data is available to you, with the near-infinite performance and concurrency required by your organization. You can seamlessly share and consume shared data across your organization to collaborate and solve your most difficult business problems. You can increase productivity and reduce time to value by collaborating with data professionals to quickly deliver integrated data solutions from any location in your organization. Our technology partners and system integrators can help you deploy Snowflake to your success, no matter if you are moving data into Snowflake.
  • 2
    Google Cloud BigQuery Reviews
    ANSI SQL allows you to analyze petabytes worth of data at lightning-fast speeds with no operational overhead. Analytics at scale with 26%-34% less three-year TCO than cloud-based data warehouse alternatives. You can unleash your insights with a trusted platform that is more secure and scales with you. Multi-cloud analytics solutions that allow you to gain insights from all types of data. You can query streaming data in real-time and get the most current information about all your business processes. Machine learning is built-in and allows you to predict business outcomes quickly without having to move data. With just a few clicks, you can securely access and share the analytical insights within your organization. Easy creation of stunning dashboards and reports using popular business intelligence tools right out of the box. BigQuery's strong security, governance, and reliability controls ensure high availability and a 99.9% uptime SLA. Encrypt your data by default and with customer-managed encryption keys
  • 3
    Dagster+ Reviews

    Dagster+

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 4
    Openbridge Reviews

    Openbridge

    Openbridge

    $149 per month
    Discover insights to boost sales growth with code-free, fully automated data pipelines to data lakes and cloud warehouses. Flexible, standards-based platform that unifies sales and marketing data to automate insights and smarter growth. Say goodbye to manual data downloads that are expensive and messy. You will always know exactly what you'll be charged and only pay what you actually use. Access to data-ready data is a great way to fuel your tools. We only work with official APIs as certified developers. Data pipelines from well-known sources are easy to use. These data pipelines are pre-built, pre-transformed and ready to go. Unlock data from Amazon Vendor Central and Amazon Seller Central, Instagram Stories. Teams can quickly and economically realize the value of their data with code-free data ingestion and transformation. Databricks, Amazon Redshift and other trusted data destinations like Databricks or Amazon Redshift ensure that data is always protected.
  • 5
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 6
    Meltano Reviews
    Meltano offers the most flexibility in deployment options. You control your data stack from beginning to end. Since years, a growing number of connectors has been in production. You can run workflows in isolated environments and execute end-to-end testing. You can also version control everything. Open source gives you the power and flexibility to create your ideal data stack. You can easily define your entire project in code and work confidently with your team. The Meltano CLI allows you to quickly create your project and make it easy to replicate data. Meltano was designed to be the most efficient way to run dbt and manage your transformations. Your entire data stack can be defined in your project. This makes it easy to deploy it to production.
  • 7
    TROCCO Reviews

    TROCCO

    primeNumber Inc

    TROCCO is an automation and data integration platform that streamlines the data engineering workflow by combining multiple aspects into a single solution. This reduces the time and effort needed to build data pipelines using different tools. It has a wide range of features including ETL/ELT and orchestration, transformation and reverse ETL. This allows for seamless data movement from and to cloud warehouses, allowing downstream analytics, AI and ML applications. TROCCO is a SaaS platform that manages infrastructure and scaling issues, allowing users the freedom to focus on extracting maximum value from their data, rather than managing pipelines. It supports batch and near-real-time data synchronization via HTTP, custom integrations and connectivity to on-premise data sources. Users can transform data with Python or no-code template, model it using SQL or dbt and orchestrate pipelines via an integrated workflow engine.
  • Previous
  • You're on page 1
  • Next