Best Deep Learning Software for On-Premises of 2024

Find and compare the best Deep Learning software for On-Premises in 2024

Use the comparison tool below to compare the top Deep Learning software for On-Premises on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Domino Enterprise MLOps Platform Reviews
    The Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 2
    Clarifai Reviews
    Clarifai is a leading AI platform for modeling image, video, text and audio data at scale. Our platform combines computer vision, natural language processing and audio recognition as building blocks for building better, faster and stronger AI. We help enterprises and public sector organizations transform their data into actionable insights. Our technology is used across many industries including Defense, Retail, Manufacturing, Media and Entertainment, and more. We help our customers create innovative AI solutions for visual search, content moderation, aerial surveillance, visual inspection, intelligent document analysis, and more. Founded in 2013 by Matt Zeiler, Ph.D., Clarifai has been a market leader in computer vision AI since winning the top five places in image classification at the 2013 ImageNet Challenge. Clarifai is headquartered in Delaware
  • 3
    Automation Hero Reviews

    Automation Hero

    Automation Hero

    $6 per node
    Automation Hero's platform is democratized and bottom-up. Users can create automations from simple tasks to complex business processes using a no-code GUI. They can also add AI at any time without having to rely on IT or data scientists. The platform also includes Hero_Sonar, Hero_Go, and AI Studio. These allow you to upload or train AI models, and Flow Studio allows you to create automation flows. Robin, Automation Hero's personal assistant, is available for human-in the loop integration. Robin is also a feedback loop that helps improve AI models. Automation Hero can be used on-premises or in the cloud. Automation Hero is available on-premise or in the cloud. It comes with built-in orchestration.
  • 4
    Ray Reviews

    Ray

    Anyscale

    Free
    You can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution.
  • 5
    Metacoder Reviews

    Metacoder

    Wazoo Mobile Technologies LLC

    $89 per user/month
    Metacoder makes data processing faster and more efficient. Metacoder provides data analysts with the flexibility and tools they need to make data analysis easier. Metacoder automates data preparation steps like cleaning, reducing the time it takes to inspect your data before you can get up and running. It is a good company when compared to other companies. Metacoder is cheaper than similar companies and our management is actively developing based upon our valued customers' feedback. Metacoder is primarily used to support predictive analytics professionals in their work. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We make it easy to manage the machine learning pipeline and help organizations share their work. Soon, we will offer code-free solutions for image, audio and video as well as biomedical data.
  • 6
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 7
    Mobius Labs Reviews
    We make it easy for you to add superhuman computer vision into your applications, devices, and processes to give yourself an unassailable competitive edge.
  • 8
    DeepSpeed Reviews
    DeepSpeed is a deep learning optimization library that is open source for PyTorch. It is designed to reduce memory and computing power, and to train large distributed model with better parallelism using existing computer hardware. DeepSpeed is optimized to provide high throughput and low latency training. DeepSpeed can train DL-models with more than 100 billion parameters using the current generation GPU clusters. It can also train as many as 13 billion parameters on a single GPU. DeepSpeed, developed by Microsoft, aims to provide distributed training for large models. It's built using PyTorch which is a data parallelism specialist.
  • 9
    Google Deep Learning Containers Reviews
    Google Cloud allows you to quickly build your deep learning project. You can quickly prototype your AI applications using Deep Learning Containers. These Docker images are compatible with popular frameworks, optimized for performance, and ready to be deployed. Deep Learning Containers create a consistent environment across Google Cloud Services, making it easy for you to scale in the cloud and shift from on-premises. You can deploy on Google Kubernetes Engine, AI Platform, Cloud Run and Compute Engine as well as Docker Swarm and Kubernetes Engine.
  • 10
    Horovod Reviews
    Uber developed Horovod to make distributed deep-learning fast and easy to implement, reducing model training time from days and even weeks to minutes and hours. Horovod allows you to scale up an existing script so that it runs on hundreds of GPUs with just a few lines Python code. Horovod is available on-premises or as a cloud platform, including AWS Azure and Databricks. Horovod is also able to run on Apache Spark, allowing data processing and model-training to be combined into a single pipeline. Horovod can be configured to use the same infrastructure to train models using any framework. This makes it easy to switch from TensorFlow to PyTorch to MXNet and future frameworks, as machine learning tech stacks evolve.
  • 11
    Bright Cluster Manager Reviews
    Bright Cluster Manager offers a variety of machine learning frameworks including Torch, Tensorflow and Tensorflow to simplify your deep-learning projects. Bright offers a selection the most popular Machine Learning libraries that can be used to access datasets. These include MLPython and NVIDIA CUDA Deep Neural Network Library (cuDNN), Deep Learning GPU Trainer System (DIGITS), CaffeOnSpark (a Spark package that allows deep learning), and MLPython. Bright makes it easy to find, configure, and deploy all the necessary components to run these deep learning libraries and frameworks. There are over 400MB of Python modules to support machine learning packages. We also include the NVIDIA hardware drivers and CUDA (parallel computer platform API) drivers, CUB(CUDA building blocks), NCCL (library standard collective communication routines).
  • Previous
  • You're on page 1
  • Next