Best Deep Learning Software for Caffe

Find and compare the best Deep Learning software for Caffe in 2024

Use the comparison tool below to compare the top Deep Learning software for Caffe on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Lambda GPU Cloud Reviews
    The most complex AI, ML, Deep Learning models can be trained. With just a few clicks, you can scale from a single machine up to a whole fleet of VMs. Lambda Cloud makes it easy to scale up or start your Deep Learning project. You can get started quickly, save compute costs, and scale up to hundreds of GPUs. Every VM is pre-installed with the most recent version of Lambda Stack. This includes major deep learning frameworks as well as CUDA®. drivers. You can access the cloud dashboard to instantly access a Jupyter Notebook development environment on each machine. You can connect directly via the Web Terminal or use SSH directly using one of your SSH keys. Lambda can make significant savings by building scaled compute infrastructure to meet the needs of deep learning researchers. Cloud computing allows you to be flexible and save money, even when your workloads increase rapidly.
  • 2
    NVIDIA DIGITS Reviews
    NVIDIA DeepLearning GPU Training System (DIGITS), puts deep learning in the hands of data scientists and engineers. DIGITS is a fast and accurate way to train deep neural networks (DNNs), for image classification, segmentation, and object detection tasks. DIGITS makes it easy to manage data, train neural networks on multi-GPU platforms, monitor performance with advanced visualizations and select the best model from the results browser for deployment. DIGITS is interactive, so data scientists can concentrate on designing and training networks and not programming and debugging. TensorFlow allows you to interactively train models and TensorBoard lets you visualize the model architecture. Integrate custom plugs to import special data formats, such as DICOM, used in medical imaging.
  • 3
    Fabric for Deep Learning (FfDL) Reviews
    Deep learning frameworks like TensorFlow and PyTorch, Torch and Torch, Theano and MXNet have helped to increase the popularity of deep-learning by reducing the time and skills required to design, train and use deep learning models. Fabric for Deep Learning (pronounced "fiddle") is a consistent way of running these deep-learning frameworks on Kubernetes. FfDL uses microservices architecture to reduce the coupling between components. It isolates component failures and keeps each component as simple and stateless as possible. Each component can be developed, tested and deployed independently. FfDL leverages the power of Kubernetes to provide a resilient, scalable and fault-tolerant deep learning framework. The platform employs a distribution and orchestration layer to allow for learning from large amounts of data in a reasonable time across multiple compute nodes.
  • 4
    Zebra by Mipsology Reviews
    Mipsology's Zebra is the ideal Deep Learning compute platform for neural network inference. Zebra seamlessly replaces or supplements CPUs/GPUs, allowing any type of neural network to compute more quickly, with lower power consumption and at a lower price. Zebra deploys quickly, seamlessly, without any knowledge of the underlying hardware technology, use specific compilation tools, or modifications to the neural network training, framework, or application. Zebra computes neural network at world-class speeds, setting a new standard in performance. Zebra can run on the highest throughput boards, all the way down to the smallest boards. The scaling allows for the required throughput in data centers, at edge or in the cloud. Zebra can accelerate any neural network, even user-defined ones. Zebra can process the same CPU/GPU-based neural network with the exact same accuracy and without any changes.
  • 5
    OpenVINO Reviews
    The Intel Distribution of OpenVINO makes it easy to adopt and maintain your code. Open Model Zoo offers optimized, pre-trained models. Model Optimizer API parameters make conversions easier and prepare them for inferencing. The runtime (inference engines) allows you tune for performance by compiling an optimized network and managing inference operations across specific devices. It auto-optimizes by device discovery, load balancencing, inferencing parallelism across CPU and GPU, and many other functions. You can deploy the same application to multiple host processors and accelerators (CPUs. GPUs. VPUs.) and environments (on-premise or in the browser).
  • Previous
  • You're on page 1
  • Next