Best Data Validation Tools for Cloudera

Find and compare the best Data Validation tools for Cloudera in 2024

Use the comparison tool below to compare the top Data Validation tools for Cloudera on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    QuerySurge Reviews
    Top Pick
    QuerySurge is the smart Data Testing solution that automates the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Applications with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Big Data (Hadoop & NoSQL) Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise Application/ERP Testing Features Supported Technologies - 200+ data stores are supported QuerySurge Projects - multi-project support Data Analytics Dashboard - provides insight into your data Query Wizard - no programming required Design Library - take total control of your custom test desig BI Tester - automated business report testing Scheduling - run now, periodically or at a set time Run Dashboard - analyze test runs in real-time Reports - 100s of reports API - full RESTful API DevOps for Data - integrates into your CI/CD pipeline Test Management Integration QuerySurge will help you: - Continuously detect data issues in the delivery pipeline - Dramatically increase data validation coverage - Leverage analytics to optimize your critical data - Improve your data quality at speed
  • 2
    iCEDQ Reviews
    iCEDQ, a DataOps platform that allows monitoring and testing, is a DataOps platform. iCEDQ is an agile rules engine that automates ETL Testing, Data Migration Testing and Big Data Testing. It increases productivity and reduces project timelines for testing data warehouses and ETL projects. Identify data problems in your Data Warehouse, Big Data, and Data Migration Projects. The iCEDQ platform can transform your ETL or Data Warehouse Testing landscape. It automates it from end to end, allowing the user to focus on analyzing the issues and fixing them. The first edition of iCEDQ was designed to validate and test any volume of data with our in-memory engine. It can perform complex validation using SQL and Groovy. It is optimized for Data Warehouse Testing. It scales based upon the number of cores on a server and is 5X faster that the standard edition.
  • 3
    Ataccama ONE Reviews
    Ataccama is a revolutionary way to manage data and create enterprise value. Ataccama unifies Data Governance, Data Quality and Master Data Management into one AI-powered fabric that can be used in hybrid and cloud environments. This gives your business and data teams unprecedented speed and security while ensuring trust, security and governance of your data.
  • 4
    Alteryx Reviews
    Alteryx AI Platform will help you enter a new age of analytics. Empower your organization through automated data preparation, AI powered analytics, and accessible machine learning - all with embedded governance. Welcome to a future of data-driven decision making for every user, team and step. Empower your team with an intuitive, easy-to-use user experience that allows everyone to create analytical solutions that improve productivity and efficiency. Create an analytics culture using an end-toend cloud analytics platform. Data can be transformed into insights through self-service data preparation, machine learning and AI generated insights. Security standards and certifications are the best way to reduce risk and ensure that your data is protected. Open API standards allow you to connect with your data and applications.
  • 5
    DataBuck Reviews
    Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
  • 6
    Talend Data Catalog Reviews
    Talend Data Catalog provides your organization with a single point of control for all your data. Data Catalog provides robust tools for search, discovery, and connectors that allow you to extract metadata from almost any data source. It makes it easy to manage your data pipelines, protect your data, and accelerate your ETL process. Data Catalog automatically crawls, profiles and links all your metadata. Data Catalog automatically documents up to 80% of the data associated with it. Smart relationships and machine learning keep the data current and up-to-date, ensuring that the user has the most recent data. Data governance can be made a team sport by providing a single point of control that allows you to collaborate to improve data accessibility and accuracy. With intelligent data lineage tracking and compliance tracking, you can support data privacy and regulatory compliance.
  • Previous
  • You're on page 1
  • Next