Best Data Science Software for Freelancers

Find and compare the best Data Science software for Freelancers in 2024

Use the comparison tool below to compare the top Data Science software for Freelancers on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Vertex AI Reviews
    See Software
    Learn More
    Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
  • 2
    IBM SPSS Statistics Reviews
    Top Pick
    See Software
    Learn More
    IBM® SPSS® Statistics software is used by a variety of customers to solve industry-specific business issues to drive quality decision-making. The IBM® SPSS® software platform offers advanced statistical analysis, a vast library of machine learning algorithms, text analysis, open-source extensibility, integration with big data and seamless deployment into applications. Its ease of use, flexibility and scalability make SPSS accessible to users of all skill levels. What’s more, it’s suitable for projects of all sizes and levels of complexity, and can help you find new opportunities, improve efficiency and minimize risk.
  • 3
    RunLve Reviews
    Runlve is at the forefront of the AI revolution. We provide data science, MLOps and data & models management to empower our community and customers with AI capabilities that will propel their projects forward.
  • 4
    Composable DataOps Platform Reviews
    Composable is an enterprise-grade DataOps platform designed for business users who want to build data-driven products and create data intelligence solutions. It can be used to design data-driven products that leverage disparate data sources, live streams, and event data, regardless of their format or structure. Composable offers a user-friendly, intuitive dataflow visual editor, built-in services that facilitate data engineering, as well as a composable architecture which allows abstraction and integration of any analytical or software approach. It is the best integrated development environment for discovering, managing, transforming, and analysing enterprise data.
  • 5
    Jupyter Notebook Reviews
    Open-source web application, the Jupyter Notebook, allows you to create and share documents with live code, equations, and visualizations. Data cleaning and transformation, numerical modeling, statistical modeling and data visualization are just a few of the many uses.
  • 6
    Neural Designer Reviews

    Neural Designer

    Artelnics

    $2495/year (per user)
    2 Ratings
    Neural Designer is a data-science and machine learning platform that allows you to build, train, deploy, and maintain neural network models. This tool was created to allow innovative companies and research centres to focus on their applications, not on programming algorithms or programming techniques. Neural Designer does not require you to code or create block diagrams. Instead, the interface guides users through a series of clearly defined steps. Machine Learning can be applied in different industries. These are some examples of machine learning solutions: - In engineering: Performance optimization, quality improvement and fault detection - In banking, insurance: churn prevention and customer targeting. - In healthcare: medical diagnosis, prognosis and activity recognition, microarray analysis and drug design. Neural Designer's strength is its ability to intuitively build predictive models and perform complex operations.
  • 7
    Gathr.ai Reviews
    Gathr is a Data+AI fabric, helping enterprises rapidly deliver production-ready data and AI products. Data+AI fabric enables teams to effortlessly acquire, process, and harness data, leverage AI services to generate intelligence, and build consumer applications— all with unparalleled speed, scale, and confidence. Gathr’s self-service, AI-assisted, and collaborative approach enables data and AI leaders to achieve massive productivity gains by empowering their existing teams to deliver more valuable work in less time. With complete ownership and control over data and AI, flexibility and agility to experiment and innovate on an ongoing basis, and proven reliable performance at real-world scale, Gathr allows them to confidently accelerate POVs to production. Additionally, Gathr supports both cloud and air-gapped deployments, making it the ideal choice for diverse enterprise needs. Gathr, recognized by leading analysts like Gartner and Forrester, is a go-to-partner for Fortune 500 companies, such as United, Kroger, Philips, Truist, and many others.
  • 8
    Dataiku DSS Reviews
    Data analysts, engineers, scientists, and other scientists can be brought together. Automate self-service analytics and machine learning operations. Get results today, build for tomorrow. Dataiku DSS is a collaborative data science platform that allows data scientists, engineers, and data analysts to create, prototype, build, then deliver their data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) You can also use a drag-and-drop visual interface or Python, R, Spark, Scala, Hive notebooks at every step of the predictive dataflow prototyping procedure - from wrangling to analysis and modeling. Visually profile the data at each stage of the analysis. Interactively explore your data and chart it using 25+ built in charts. Use 80+ built-in functions to prepare, enrich, blend, clean, and clean your data. Make use of Machine Learning technologies such as Scikit-Learn (MLlib), TensorFlow and Keras. In a visual UI. You can build and optimize models in Python or R, and integrate any external library of ML through code APIs.
  • 9
    Posit Reviews
    One source of truth for R packages and Python packages RStudio is the preferred professional data science solution for every group. A Python and R integrated development environment with syntax-highlighting editor, console, and code execution. It also includes tools for workspace management, history, plotting, and plotting. You can publish and distribute data products throughout your organization. One-button deployment of Shiny applications and R Markdown reports, Jupyter Notebooks, etc. To increase reproducibility and reduce the time spent installing and troubleshooting R packages, you can control, organize, and manage your use of them. RStudio is committed to sustainable investment in open-source and free software for data science. RStudio has been certified as a B Corporation. This means that our open-source mission has been codified in our charter. Our professional software products are enterprise-ready and provide a modular platform that allows teams to adopt open-source data sciences at scale.
  • 10
    Cloudera Reviews
    Secure and manage the data lifecycle, from Edge to AI in any cloud or data centre. Operates on all major public clouds as well as the private cloud with a public experience everywhere. Integrates data management and analytics experiences across the entire data lifecycle. All environments are covered by security, compliance, migration, metadata management. Open source, extensible, and open to multiple data stores. Self-service analytics that is faster, safer, and easier to use. Self-service access to multi-function, integrated analytics on centrally managed business data. This allows for consistent experiences anywhere, whether it is in the cloud or hybrid. You can enjoy consistent data security, governance and lineage as well as deploying the cloud analytics services that business users need. This eliminates the need for shadow IT solutions.
  • 11
    SquadStack Reviews
    Our outsourcing platform seamlessly manages all your outbound calls with a robust tech stack and artificial intelligence. Start the onboarding process for new customers by welcoming them to your platform. To reduce drop-offs, help and educate customers throughout the onboarding process on your platform. Engage with your gig workforce regularly to increase productivity and retention. Reach out to leads to confirm delivery status, capture correct addresses, and reduce disruptions in delivery. Connect with customers over phone to improve customer service and reduce RTOs. You can save time and effort by setting up appointments seamlessly for your sales team.
  • 12
    Streamlit Reviews
    Streamlit. The fastest way to create and share data apps. In minutes, turn data scripts into sharable Web apps All in Python. All this for free. No need for front-end experience. Streamlit combines three simple concepts. Use Python scripting. Our API is simple and allows you to create an app in just a few lines of code. You can then see the app update automatically as you save your source file. You can also use interaction. Declaring a variable is the same thing as adding a widget. You don't need to create a backend, define routes or handle HTTP requests. You can deploy your app instantly. Streamlit's platform for sharing allows you to easily share, manage and collaborate on your apps. A framework that allows you to create powerful apps. Face-GAN explorer. App that generates faces matching selected attributes using Shaobo Guan’s TL-GAN project, TensorFlow and NVIDIA’s PG-GAN. Real time object detection. A browser that displays images from the Udacity self driving-car dataset.
  • 13
    Saturn Cloud Reviews
    Top Pick

    Saturn Cloud

    Saturn Cloud

    $0.005 per GB per hour
    91 Ratings
    Saturn Cloud is an AI/ML platform available on every cloud. Data teams and engineers can build, scale, and deploy their AI/ML applications with any stack.
  • 14
    Anaconda Reviews
    Top Pick
    A fully-featured machine learning platform empowers enterprises to conduct real data science at scale and speed. You can spend less time managing infrastructure and tools so that you can concentrate on building machine learning applications to propel your business forward. Anaconda Enterprise removes the hassle from ML operations and puts open-source innovation at the fingertips. It provides the foundation for serious machine learning and data science production without locking you into any specific models, templates, workflows, or models. AE allows data scientists and software developers to work together to create, test, debug and deploy models using their preferred languages. AE gives developers and data scientists access to both notebooks as well as IDEs, allowing them to work more efficiently together. They can also choose between preconfigured projects and example projects. AE projects can be easily moved from one environment to the next by being automatically packaged.
  • 15
    MATLAB Reviews
    Top Pick
    MATLAB®, a combination of a desktop environment for iterative analysis, design processes, and a programming language that expresses matrix or array mathematics directly, is MATLAB®. It also includes the Live Editor, which allows you to create scripts that combine output, code, and formatted text in an executable notebook. MATLAB toolboxes have been professionally developed, tested and documented. MATLAB apps allow you to see how different algorithms interact with your data. You can repeat the process until you get the results you desire. Then, MATLAB will automatically generate a program to replicate or automate your work. With minor code changes, you can scale your analyses to run on GPUs, clusters, and clouds. You don't need to rewrite any code or learn big-data programming and other out-of-memory methods. Convert MATLAB algorithms automatically to C/C++ and HDL to run on your embedded processor/FPGA/ASIC. Simulink works with MATLAB to support Model-Based Design.
  • 16
    Plotly Dash Reviews
    Dash & Dash Enterprise allow you to build and deploy analytic web applications using Python, R, or Julia. No JavaScript or DevOps are required. The world's most successful companies offer AI, ML and Python analytics at a fraction of the cost of full-stack development. Dash is the way they do it. Apps and dashboards that run advanced analytics such as NLP, forecasting and computer vision can be delivered. You can work in Python, R, or Julia. Reduce costs by migrating legacy per-seat license software to Dash Enterprise's unlimited end-user pricing model. You can deploy and update Dash apps faster without an IT or DevOps staff. You can create pixel-perfect web apps and dashboards without having to write any CSS. Kubernetes makes it easy to scale. High availability support for mission-critical Python apps
  • 17
    SAP Analytics Cloud Reviews
    SAP Analytics Cloud is a data visualization and business intelligence platform that helps businesses of all sizes make better decisions. SAP Analytics Cloud features include digital boardroom, predictive analytics, business planning, reporting, and digital boardroom. SAP Analytics Cloud can be deployed in the cloud and is accessible via iPhones or iPads. SAP Analytics Cloud offers multiple support options, including online support, phone support, and knowledge base.
  • 18
    Wolfram Mathematica Reviews
    The definitive system for modern technical computing. Mathematica is the global standard for technical computing. It has been the main computing environment for millions of students, educators, and innovators around the globe for over three decades. Mathematica is widely admired for its technical prowess as well as its elegant ease-of-use. It seamlessly integrates all aspects of technical computing and is available in the cloud via any web browser as well as natively on any modern desktop system. Mathematica is a pioneer in technical computing support and workflows, thanks to its energetic development and consistent vision over three decades.
  • 19
    IBM Streams Reviews
    IBM Streams analyzes a wide range of streaming data, including unstructured text, video and audio, and geospatial and sensor data. This helps organizations to spot opportunities and risks, and make decisions in real-time.
  • 20
    Deepnote Reviews
    Deepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud.
  • 21
    Zing Data Reviews
    You can quickly find answers with the flexible visual query builder. You can access data via your browser or phone and analyze it anywhere you are. No SQL, data scientist, or desktop required. You can learn from your team mates and search for any questions within your organization with shared questions. @mentions, push notifications and shared chat allow you to bring the right people in the conversation and make data actionable. You can easily copy and modify shared questions, export data and change the way charts are displayed so you don't just see someone else's analysis but make it yours. External sharing can be turned on to allow access to data tables and partners outside your domain. In just two clicks, you can access the underlying data tables. Smart typeaheads make it easy to run custom SQL.
  • 22
    Metacoder Reviews

    Metacoder

    Wazoo Mobile Technologies LLC

    $89 per user/month
    Metacoder makes data processing faster and more efficient. Metacoder provides data analysts with the flexibility and tools they need to make data analysis easier. Metacoder automates data preparation steps like cleaning, reducing the time it takes to inspect your data before you can get up and running. It is a good company when compared to other companies. Metacoder is cheaper than similar companies and our management is actively developing based upon our valued customers' feedback. Metacoder is primarily used to support predictive analytics professionals in their work. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We make it easy to manage the machine learning pipeline and help organizations share their work. Soon, we will offer code-free solutions for image, audio and video as well as biomedical data.
  • 23
    Darwin Reviews

    Darwin

    SparkCognition

    $4000
    Darwin is an automated machine-learning product that allows your data science and business analysis teams to quickly move from data to meaningful results. Darwin assists organizations in scaling the adoption of data science across their teams and the implementation machine learning applications across operations to become data-driven enterprises.
  • 24
    JetBrains Datalore Reviews

    JetBrains Datalore

    JetBrains

    $19.90 per month
    Datalore is a platform for collaborative data science and analytics that aims to improve the entire analytics workflow and make working with data more enjoyable for both data scientists as well as data-savvy business teams. Datalore is a collaborative platform that focuses on data teams workflow. It offers technical-savvy business users the opportunity to work with data teams using no-code and low-code, as well as the power of Jupyter Notebooks. Datalore allows business users to perform analytic self-service. They can work with data using SQL or no-code cells, create reports, and dive deep into data. It allows core data teams to focus on simpler tasks. Datalore allows data scientists and analysts to share their results with ML Engineers. You can share your code with ML Engineers on powerful CPUs and GPUs, and you can collaborate with your colleagues in real time.
  • 25
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next