Best Data Science Software for GitHub

Find and compare the best Data Science software for GitHub in 2024

Use the comparison tool below to compare the top Data Science software for GitHub on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Jupyter Notebook Reviews
    Open-source web application, the Jupyter Notebook, allows you to create and share documents with live code, equations, and visualizations. Data cleaning and transformation, numerical modeling, statistical modeling and data visualization are just a few of the many uses.
  • 2
    Domino Enterprise MLOps Platform Reviews
    The Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 3
    Saturn Cloud Reviews
    Top Pick

    Saturn Cloud

    Saturn Cloud

    $0.005 per GB per hour
    91 Ratings
    Saturn Cloud is an AI/ML platform available on every cloud. Data teams and engineers can build, scale, and deploy their AI/ML applications with any stack.
  • 4
    Domo Reviews
    Top Pick
    Domo puts data to work for everyone so they can multiply their impact on the business. Underpinned by a secure data foundation, our cloud-native data experience platform makes data visible and actionable with user-friendly dashboards and apps. Domo helps companies optimize critical business processes at scale and in record time to spark bold curiosity that powers exponential business results.
  • 5
    Deepnote Reviews
    Deepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud.
  • 6
    Coder Reviews
    Coder offers self-hosted cloud development environments, provisioned as code and ready for developers from day one. Favored by enterprises, Coder is open source and can be deployed air-gapped on-premise or in your cloud, ensuring powerful infrastructure access without sacrificing governance. By shifting local development and source code to a centralized infrastructure, Coder allows developers to access their remote environments via their preferred desktop or web-based IDE. This approach enhances developer experience, productivity, and security. With Coder’s ephemeral development environments, provisioned as code from pre-defined templates, developers can instantly create new workspaces. This streamlines the process, eliminating the need to deal with local dependency versioning issues or lengthy security approvals. Coder enables developers to onboard or switch projects in a matter of minutes.
  • 7
    TrueFoundry Reviews

    TrueFoundry

    TrueFoundry

    $5 per month
    TrueFoundry provides data scientists and ML engineers with the fastest framework to support the post-model pipeline. With the best DevOps practices, we enable instant monitored endpoints to models in just 15 minutes! You can save, version, and monitor ML models and artifacts. With one command, you can create an endpoint for your ML Model. WebApps can be created without any frontend knowledge or exposure to other users as per your choice. Social swag! Our mission is to make machine learning fast and scalable, which will bring positive value! TrueFoundry is enabling this transformation by automating parts of the ML pipeline that are automated and empowering ML Developers with the ability to test and launch models quickly and with as much autonomy possible. Our inspiration comes from the products that Platform teams have created in top tech companies such as Facebook, Google, Netflix, and others. These products allow all teams to move faster and deploy and iterate independently.
  • 8
    SAS Viya Reviews
    SAS®, Viya®, data science offerings offer a comprehensive, scalable analytical environment that is quick and easy to use, allowing you to meet diverse business requirements. Automatically generated insights allow you to identify the most commonly used variables across all models, the most significant variables selected across models, and assess results for all models. Natural language generation capabilities allow you to create project summaries in plain language. This makes it easy to interpret reports. Analytics team members can add project notes and comments to the insights report to facilitate communication between team members. SAS allows you to embed open source code into an analysis and call open-source algorithms seamlessly within its environment. This allows for collaboration within your organization as users can program in the language they prefer. SAS Deep Learning with Python (DLPy) is also available on GitHub.
  • 9
    Hex Reviews

    Hex

    Hex

    $24 per user per month
    Hex combines the best of notebooks and BI into a seamless, collaborative interface. Hex is a modern Data Workspace. It makes it easy for you to connect to data and analyze it in collaborative SQL or Python-powered notebooks. You can also share work as interactive data apps or stories. The Projects page is your default landing page in Hex. You can quickly find the projects you have created and those you share with others. The outline gives you an easy-to-read overview of all cells in a project's Logic View. Each cell in the outline lists all variables it defines and any cells that return an output (chart cells or Input Parameters cells, etc.). Display a preview of the output. To jump to a specific position in the logic, you can click on any cell in the outline.
  • 10
    Zerve AI Reviews
    With a fully automated cloud infrastructure, experts can explore data and write stable codes at the same time. Zerve’s data science environment gives data scientists and ML teams a unified workspace to explore, collaborate and build data science & AI project like never before. Zerve provides true language interoperability. Users can use Python, R SQL or Markdown in the same canvas and connect these code blocks. Zerve offers unlimited parallelization, allowing for code blocks and containers to run in parallel at any stage of development. Analysis artifacts can be automatically serialized, stored and preserved. This allows you to change a step without having to rerun previous steps. Selecting compute resources and memory in a fine-grained manner for complex data transformation.
  • 11
    Vectice Reviews
    All enterprise's AI/ML efforts can have a consistent and positive impact. Data scientists deserve a solution that makes their experiments reproducible, each asset discoverable, and simplifies knowledge transfer. Managers deserve a dedicated data science solution. To automate reporting, secure knowledge, and simplify reviews and other processes. Vectice's mission is to revolutionize how data science teams collaborate and work together. All organizations should see consistent and positive AI/ML impacts. Vectice is the first automated knowledge system that is data science-aware, actionable, and compatible with the tools used by data scientists. Vectice automatically captures all assets created by AI/ML teams, such as data, code, notebooks and models, or runs. It then automatically generates documentation, from business requirements to production deployments.
  • 12
    Zepl Reviews
    All work can be synced, searched and managed across your data science team. Zepl's powerful search allows you to discover and reuse models, code, and other data. Zepl's enterprise collaboration platform allows you to query data from Snowflake or Athena and then build your models in Python. For enhanced interactions with your data, use dynamic forms and pivoting. Zepl creates new containers every time you open your notebook. This ensures that you have the same image each time your models are run. You can invite your team members to join you in a shared space, and they will be able to work together in real-time. Or they can simply leave comments on a notebook. You can share your work with fine-grained access controls. You can allow others to read, edit, run, and share your work. This will facilitate collaboration and distribution. All notebooks can be saved and versioned automatically. An easy-to-use interface allows you to name, manage, roll back, and roll back all versions. You can also export seamlessly into Github.
  • Previous
  • You're on page 1
  • Next