Best Data Quality Software for Google Cloud Storage

Find and compare the best Data Quality software for Google Cloud Storage in 2024

Use the comparison tool below to compare the top Data Quality software for Google Cloud Storage on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Immuta Reviews
    Immuta's Data Access Platform is built to give data teams secure yet streamlined access to data. Every organization is grappling with complex data policies as rules and regulations around that data are ever-changing and increasing in number. Immuta empowers data teams by automating the discovery and classification of new and existing data to speed time to value; orchestrating the enforcement of data policies through Policy-as-code (PaC), data masking, and Privacy Enhancing Technologies (PETs) so that any technical or business owner can manage and keep it secure; and monitoring/auditing user and policy activity/history and how data is accessed through automation to ensure provable compliance. Immuta integrates with all of the leading cloud data platforms, including Snowflake, Databricks, Starburst, Trino, Amazon Redshift, Google BigQuery, and Azure Synapse. Our platform is able to transparently secure data access without impacting performance. With Immuta, data teams are able to speed up data access by 100x, decrease the number of policies required by 75x, and achieve provable compliance goals.
  • 2
    Coginiti Reviews

    Coginiti

    Coginiti

    $189/user/year
    Coginiti is the AI-enabled enterprise Data Workspace that empowers everyone to get fast, consistent answers to any business questions. Coginiti helps you find and search for metrics that are approved for your use case, accelerating the lifecycle of analytic development from development to certification. Coginiti integrates the functionality needed to build, approve and curate analytics for reuse across all business domains, while adhering your data governance policies and standards. Coginiti’s collaborative data workspace is trusted by teams in the insurance, healthcare, financial services and retail/consumer packaged goods industries to deliver value to customers.
  • 3
    Mozart Data Reviews
    Mozart Data is the all-in-one modern data platform for consolidating, organizing, and analyzing your data. Set up a modern data stack in an hour, without any engineering. Start getting more out of your data and making data-driven decisions today.
  • 4
    Telmai Reviews
    A low-code no-code approach to data quality. SaaS offers flexibility, affordability, ease-of-integration, and efficient support. High standards for encryption, identity management and role-based access control. Data governance and compliance standards. Advanced ML models for detecting row-value data anomalies. The models will adapt to the business and data requirements of users. You can add any number of data sources, records, or attributes. For unpredictable volume spikes, well-equipped. Support streaming and batch processing. Data is continuously monitored to provide real-time notification, with no impact on pipeline performance. Easy boarding, integration, investigation. Telmai is a platform that allows Data Teams to detect and investigate anomalies in real-time. No-code on-boarding. Connect to your data source, and select alerting channels. Telmai will automatically learn data and alert you if there are unexpected drifts.
  • 5
    IBM Databand Reviews
    Monitor your data health, and monitor your pipeline performance. Get unified visibility for all pipelines that use cloud-native tools such as Apache Spark, Snowflake and BigQuery. A platform for Data Engineers that provides observability. Data engineering is becoming more complex as business stakeholders demand it. Databand can help you catch-up. More pipelines, more complexity. Data engineers are working with more complex infrastructure and pushing for faster release speeds. It is more difficult to understand why a process failed, why it is running late, and how changes impact the quality of data outputs. Data consumers are frustrated by inconsistent results, model performance, delays in data delivery, and other issues. A lack of transparency and trust in data delivery can lead to confusion about the exact source of the data. Pipeline logs, data quality metrics, and errors are all captured and stored in separate, isolated systems.
  • 6
    Qualytics Reviews
    Enterprises can manage their data quality lifecycle proactively through contextual data checks, anomaly detection, and remediation. Expose anomalies, metadata and help teams take corrective action. Automate remediation workflows for quick and efficient error resolution. Maintain high data-quality and prevent errors from impacting business decisions. The SLA chart gives an overview of SLA. It includes the total number SLA monitoring performed and any violations. This chart will help you identify data areas that require further investigation or improvements.
  • 7
    Cleanlab Reviews
    Cleanlab Studio is a single framework that handles all analytics and machine-learning tasks. It includes the entire data quality pipeline and data-centric AI. The automated pipeline takes care of all your ML tasks: data preprocessing and foundation model tuning, hyperparameters tuning, model selection. ML models can be used to diagnose data problems, and then re-trained using your corrected dataset. Explore the heatmap of all suggested corrections in your dataset. Cleanlab Studio offers all of this and more free of charge as soon as your dataset is uploaded. Cleanlab Studio is pre-loaded with a number of demo datasets and project examples. You can view them in your account once you sign in.
  • 8
    Validio Reviews
    Get a clear view of your data assets: popularity, usage, and schema coverage. Get important insights into your data assets, such as popularity and utilization. Find and filter data based on tags and descriptions in metadata. Get valuable insights about your data assets, such as popularity, usage, quality, and schema cover. Drive data governance and ownership throughout your organization. Stream-lake-warehouse lineage to facilitate data ownership and collaboration. Lineage maps are automatically generated at the field level to help understand the entire data ecosystem. Anomaly detection is based on your data and seasonality patterns. It uses automatic backfilling from historical data. Machine learning thresholds are trained for each data segment and not just metadata.
  • Previous
  • You're on page 1
  • Next