Best Data Quality Software for Apache Spark

Find and compare the best Data Quality software for Apache Spark in 2025

Use the comparison tool below to compare the top Data Quality software for Apache Spark on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Coginiti Reviews

    Coginiti

    Coginiti

    $189/user/year
    Coginiti is the AI-enabled enterprise Data Workspace that empowers everyone to get fast, consistent answers to any business questions. Coginiti helps you find and search for metrics that are approved for your use case, accelerating the lifecycle of analytic development from development to certification. Coginiti integrates the functionality needed to build, approve and curate analytics for reuse across all business domains, while adhering your data governance policies and standards. Coginiti’s collaborative data workspace is trusted by teams in the insurance, healthcare, financial services and retail/consumer packaged goods industries to deliver value to customers.
  • 2
    DQOps Reviews

    DQOps

    DQOps

    $499 per month
    DQOps is a data quality monitoring platform for data teams that helps detect and address quality issues before they impact your business. Track data quality KPIs on data quality dashboards and reach a 100% data quality score. DQOps helps monitor data warehouses and data lakes on the most popular data platforms. DQOps offers a built-in list of predefined data quality checks verifying key data quality dimensions. The extensibility of the platform allows you to modify existing checks or add custom, business-specific checks as needed. The DQOps platform easily integrates with DevOps environments and allows data quality definitions to be stored in a source repository along with the data pipeline code.
  • 3
    Telmai Reviews
    A low-code no-code approach to data quality. SaaS offers flexibility, affordability, ease-of-integration, and efficient support. High standards for encryption, identity management and role-based access control. Data governance and compliance standards. Advanced ML models for detecting row-value data anomalies. The models will adapt to the business and data requirements of users. You can add any number of data sources, records, or attributes. For unpredictable volume spikes, well-equipped. Support streaming and batch processing. Data is continuously monitored to provide real-time notification, with no impact on pipeline performance. Easy boarding, integration, investigation. Telmai is a platform that allows Data Teams to detect and investigate anomalies in real-time. No-code on-boarding. Connect to your data source, and select alerting channels. Telmai will automatically learn data and alert you if there are unexpected drifts.
  • 4
    Foundational Reviews
    Identify code issues and optimize code in real-time. Prevent data incidents before deployment. Manage code changes that impact data from the operational database all the way to the dashboard. Data lineage is automated, allowing for analysis of every dependency, from the operational database to the reporting layer. Foundational automates the enforcement of data contracts by analyzing each repository, from upstream to downstream, directly from the source code. Use Foundational to identify and prevent code and data issues. Create controls and guardrails. Foundational can be configured in minutes without requiring any code changes.
  • 5
    IBM Databand Reviews
    Monitor your data health, and monitor your pipeline performance. Get unified visibility for all pipelines that use cloud-native tools such as Apache Spark, Snowflake and BigQuery. A platform for Data Engineers that provides observability. Data engineering is becoming more complex as business stakeholders demand it. Databand can help you catch-up. More pipelines, more complexity. Data engineers are working with more complex infrastructure and pushing for faster release speeds. It is more difficult to understand why a process failed, why it is running late, and how changes impact the quality of data outputs. Data consumers are frustrated by inconsistent results, model performance, delays in data delivery, and other issues. A lack of transparency and trust in data delivery can lead to confusion about the exact source of the data. Pipeline logs, data quality metrics, and errors are all captured and stored in separate, isolated systems.
  • 6
    Great Expectations Reviews
    Great Expectations is a standard for data quality that is shared and openly accessible. It assists data teams in eliminating pipeline debt through data testing, documentation and profiling. We recommend that you deploy within a virtual environment. You may want to read the Supporting section if you are not familiar with pip and virtual environments, notebooks or git. Many companies have high expectations and are doing amazing things these days. Take a look at some case studies of companies we have worked with to see how they use great expectations in their data stack. Great expectations cloud is a fully managed SaaS service. We are looking for private alpha members to join our great expectations cloud, a fully managed SaaS service. Alpha members have first access to new features, and can contribute to the roadmap.
  • 7
    Sifflet Reviews
    Automate the automatic coverage of thousands of tables using ML-based anomaly detection. 50+ custom metrics are also available. Monitoring of metadata and data. Comprehensive mapping of all dependencies between assets from ingestion to reporting. Collaboration between data consumers and data engineers is enhanced and productivity is increased. Sifflet integrates seamlessly with your data sources and preferred tools. It can run on AWS and Google Cloud Platform as well as Microsoft Azure. Keep an eye on your data's health and notify the team if quality criteria are not being met. In a matter of seconds, you can set up the basic coverage of all your tables. You can set the frequency, criticality, and even custom notifications. Use ML-based rules for any anomaly in your data. There is no need to create a new configuration. Each rule is unique because it learns from historical data as well as user feedback. A library of 50+ templates can be used to complement the automated rules.
  • Previous
  • You're on page 1
  • Next