Best Data Pipeline Software for Python

Find and compare the best Data Pipeline software for Python in 2024

Use the comparison tool below to compare the top Data Pipeline software for Python on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Mage Reviews
    Mage transforms data into predictions. In minutes, you can build, train, then deploy predictive models. No AI experience necessary. You can increase user engagement by ranking content in your user's homefeed. Conversion can be increased by showing users the most relevant products to purchase. You can predict which users will quit using your app to increase retention. Matching users in a marketplace can increase conversion. Data is the most crucial part of building AI. Mage will help you navigate this process and offer suggestions on how to improve data. You will become an AI expert. AI and its predictions can be confusing. Mage will explain every metric in detail, showing you how your AI model thinks. With just a few lines code, you can get real-time predictions. Mage makes it easy to integrate your AI model into any application.
  • 2
    Quix Reviews

    Quix

    Quix

    $50 per month
    Many components are required to build real-time apps or services. These components include Kafka and VPC hosting, infrastructure code, container orchestration and observability. The Quix platform handles all the moving parts. Connect your data and get started building. That's it. There are no provisioning clusters nor configuring resources. You can use Quix connectors for ingesting transaction messages from your financial processing system in a virtual private clouds or on-premise data centers. For security and efficiency, all data in transit is encrypted from the beginning and compressed using Protobuf and G-Zip. Machine learning models and rule-based algorithms can detect fraudulent patterns. You can display fraud warning messages in support dashboards or as troubleshooting tickets.
  • 3
    DataOps.live Reviews
    Create a scalable architecture that treats data products as first-class citizens. Automate and repurpose data products. Enable compliance and robust data governance. Control the costs of your data products and pipelines for Snowflake. This global pharmaceutical giant's data product teams can benefit from next-generation analytics using self-service data and analytics infrastructure that includes Snowflake and other tools that use a data mesh approach. The DataOps.live platform allows them to organize and benefit from next generation analytics. DataOps is a unique way for development teams to work together around data in order to achieve rapid results and improve customer service. Data warehousing has never been paired with agility. DataOps is able to change all of this. Governance of data assets is crucial, but it can be a barrier to agility. Dataops enables agility and increases governance. DataOps does not refer to technology; it is a way of thinking.
  • 4
    Chalk Reviews
    Data engineering workflows that are powerful, but without the headaches of infrastructure. Simple, reusable Python is used to define complex streaming, scheduling and data backfill pipelines. Fetch all your data in real time, no matter how complicated. Deep learning and LLMs can be used to make decisions along with structured business data. Don't pay vendors for data that you won't use. Instead, query data right before online predictions. Experiment with Jupyter and then deploy into production. Create new data workflows and prevent train-serve skew in milliseconds. Instantly monitor your data workflows and track usage and data quality. You can see everything you have computed, and the data will replay any information. Integrate with your existing tools and deploy it to your own infrastructure. Custom hold times and withdrawal limits can be set.
  • 5
    Yandex Data Proc Reviews

    Yandex Data Proc

    Yandex

    $0.19 per hour
    Yandex Data Proc creates and configures Spark clusters, Hadoop clusters, and other components based on the size, node capacity and services you select. Zeppelin Notebooks and other web applications can be used to collaborate via a UI Proxy. You have full control over your cluster, with root permissions on each VM. Install your own libraries and applications on clusters running without having to restart. Yandex Data Proc automatically increases or decreases computing resources for compute subclusters according to CPU usage indicators. Data Proc enables you to create managed clusters of Hive, which can reduce failures and losses due to metadata not being available. Save time when building ETL pipelines, pipelines for developing and training models, and describing other iterative processes. Apache Airflow already includes the Data Proc operator.
  • 6
    GlassFlow Reviews

    GlassFlow

    GlassFlow

    $350 per month
    GlassFlow is an event-driven, serverless data pipeline platform for Python developers. It allows users to build real time data pipelines, without the need for complex infrastructure such as Kafka or Flink. GlassFlow is a platform that allows developers to define data transformations by writing Python functions. GlassFlow manages all the infrastructure, including auto-scaling and low latency. Through its Python SDK, the platform can be integrated with a variety of data sources and destinations including Google Pub/Sub and AWS Kinesis. GlassFlow offers a low-code interface that allows users to quickly create and deploy pipelines. It also has features like serverless function executions, real-time connections to APIs, alerting and reprocessing abilities, etc. The platform is designed for Python developers to make it easier to create and manage event-driven data pipes.
  • 7
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 8
    Google Cloud Composer Reviews

    Google Cloud Composer

    Google

    $0.074 per vCPU hour
    Cloud Composer's managed nature with Apache Airflow compatibility allow you to focus on authoring and scheduling your workflows, rather than provisioning resources. Google Cloud products include BigQuery, Dataflow and Dataproc. They also offer integration with Cloud Storage, Cloud Storage, Pub/Sub and AI Platform. This allows users to fully orchestrate their pipeline. You can schedule, author, and monitor all aspects of your workflows using one orchestration tool. This is true regardless of whether your pipeline lives on-premises or in multiple clouds. You can make it easier to move to the cloud, or maintain a hybrid environment with workflows that cross over between the public cloud and on-premises. To create a unified environment, you can create workflows that connect data processing and services across cloud platforms.
  • 9
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • Previous
  • You're on page 1
  • Next