Best Data Pipeline Software for Microsoft Teams

Find and compare the best Data Pipeline software for Microsoft Teams in 2024

Use the comparison tool below to compare the top Data Pipeline software for Microsoft Teams on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Dagster+ Reviews

    Dagster+

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 2
    Datameer Reviews
    Datameer is your go-to data tool for exploring, preparing, visualizing, and cataloging Snowflake insights. From exploring raw datasets to driving business decisions – an all-in-one tool.
  • 3
    Airbyte Reviews

    Airbyte

    Airbyte

    $2.50 per credit
    All your ELT data pipelines, including custom ones, will be up and running in minutes. Your team can focus on innovation and insights. Unify all your data integration pipelines with one open-source ELT platform. Airbyte can meet all the connector needs of your data team, no matter how complex or large they may be. Airbyte is a data integration platform that scales to meet your high-volume or custom needs. From large databases to the long tail API sources. Airbyte offers a long list of connectors with high quality that can adapt to API and schema changes. It is possible to unify all native and custom ELT. Our connector development kit allows you to quickly edit and create new connectors from pre-built open-source ones. Transparent and scalable pricing. Finally, transparent and predictable pricing that scales with data needs. No need to worry about volume. No need to create custom systems for your internal scripts or database replication.
  • 4
    Lyftrondata Reviews
    Lyftrondata can help you build a governed lake, data warehouse or migrate from your old database to a modern cloud-based data warehouse. Lyftrondata makes it easy to create and manage all your data workloads from one platform. This includes automatically building your warehouse and pipeline. It's easy to share the data with ANSI SQL, BI/ML and analyze it instantly. You can increase the productivity of your data professionals while reducing your time to value. All data sets can be defined, categorized, and found in one place. These data sets can be shared with experts without coding and used to drive data-driven insights. This data sharing capability is ideal for companies who want to store their data once and share it with others. You can define a dataset, apply SQL transformations, or simply migrate your SQL data processing logic into any cloud data warehouse.
  • 5
    Meltano Reviews
    Meltano offers the most flexibility in deployment options. You control your data stack from beginning to end. Since years, a growing number of connectors has been in production. You can run workflows in isolated environments and execute end-to-end testing. You can also version control everything. Open source gives you the power and flexibility to create your ideal data stack. You can easily define your entire project in code and work confidently with your team. The Meltano CLI allows you to quickly create your project and make it easy to replicate data. Meltano was designed to be the most efficient way to run dbt and manage your transformations. Your entire data stack can be defined in your project. This makes it easy to deploy it to production.
  • 6
    Pantomath Reviews
    Data-driven organizations are constantly striving to become more data-driven. They build dashboards, analytics and data pipelines throughout the modern data stack. Unfortunately, data reliability issues are a major problem for most organizations, leading to poor decisions and a lack of trust in the data as an organisation, which directly impacts their bottom line. Resolving complex issues is a time-consuming and manual process that involves multiple teams, all of whom rely on tribal knowledge. They manually reverse-engineer complex data pipelines across various platforms to identify the root-cause and to understand the impact. Pantomath, a data pipeline traceability and observability platform, automates data operations. It continuously monitors datasets across the enterprise data ecosystem, providing context to complex data pipes by creating automated cross platform technical pipeline lineage.
  • Previous
  • You're on page 1
  • Next