Best Data Pipeline Software for Kubernetes

Find and compare the best Data Pipeline software for Kubernetes in 2024

Use the comparison tool below to compare the top Data Pipeline software for Kubernetes on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Dagster+ Reviews

    Dagster+

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 2
    Dataplane Reviews
    Dataplane's goal is to make it faster and easier to create a data mesh. It has robust data pipelines and automated workflows that can be used by businesses and teams of any size. Dataplane is more user-friendly and places a greater emphasis on performance, security, resilience, and scaling.
  • 3
    TrueFoundry Reviews

    TrueFoundry

    TrueFoundry

    $5 per month
    TrueFoundry provides data scientists and ML engineers with the fastest framework to support the post-model pipeline. With the best DevOps practices, we enable instant monitored endpoints to models in just 15 minutes! You can save, version, and monitor ML models and artifacts. With one command, you can create an endpoint for your ML Model. WebApps can be created without any frontend knowledge or exposure to other users as per your choice. Social swag! Our mission is to make machine learning fast and scalable, which will bring positive value! TrueFoundry is enabling this transformation by automating parts of the ML pipeline that are automated and empowering ML Developers with the ability to test and launch models quickly and with as much autonomy possible. Our inspiration comes from the products that Platform teams have created in top tech companies such as Facebook, Google, Netflix, and others. These products allow all teams to move faster and deploy and iterate independently.
  • 4
    Nextflow Reviews

    Nextflow

    Seqera Labs

    Free
    Data-driven computational pipelines. Nextflow allows for reproducible and scalable scientific workflows by using software containers. It allows adaptation of scripts written in most common scripting languages. Fluent DSL makes it easy to implement and deploy complex reactive and parallel workflows on clusters and clouds. Nextflow was built on the belief that Linux is the lingua Franca of data science. Nextflow makes it easier to create a computational pipeline that can be used to combine many tasks. You can reuse existing scripts and tools. Additionally, you don't have to learn a new language to use Nextflow. Nextflow supports Docker, Singularity and other containers technology. This, together with integration of the GitHub Code-sharing Platform, allows you write self-contained pipes, manage versions, reproduce any configuration quickly, and allow you to integrate the GitHub code-sharing portal. Nextflow acts as an abstraction layer between the logic of your pipeline and its execution layer.
  • 5
    StreamNative Reviews

    StreamNative

    StreamNative

    $1,000 per month
    StreamNative redefines the streaming infrastructure by integrating Kafka MQ and other protocols into a unified platform that provides unparalleled flexibility and efficiency to modern data processing requirements. StreamNative is a unified platform that adapts to diverse streaming and messaging requirements in a microservices environment. StreamNative's comprehensive and intelligent approach to streaming and messaging empowers organizations to navigate with efficiency and agility the complexity and scalability in the modern data ecosystem. Apache Pulsar’s unique architecture decouples message storage from the message serving layer, resulting in a cloud-native data streaming platform. Scalable and elastic, allowing it to adapt to changing business needs and event traffic. Scale up to millions of topics using architecture that decouples computing from storage.
  • 6
    GlassFlow Reviews

    GlassFlow

    GlassFlow

    $350 per month
    GlassFlow is an event-driven, serverless data pipeline platform for Python developers. It allows users to build real time data pipelines, without the need for complex infrastructure such as Kafka or Flink. GlassFlow is a platform that allows developers to define data transformations by writing Python functions. GlassFlow manages all the infrastructure, including auto-scaling and low latency. Through its Python SDK, the platform can be integrated with a variety of data sources and destinations including Google Pub/Sub and AWS Kinesis. GlassFlow offers a low-code interface that allows users to quickly create and deploy pipelines. It also has features like serverless function executions, real-time connections to APIs, alerting and reprocessing abilities, etc. The platform is designed for Python developers to make it easier to create and manage event-driven data pipes.
  • 7
    Astro Reviews
    Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration.
  • 8
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • 9
    Spring Cloud Data Flow Reviews
    Cloud Foundry and Kubernetes support microservice-based streaming and batch processing. Spring Cloud Data Flow allows you to create complex topologies that can be used for streaming and batch data pipelines. The data pipelines are made up of Spring Boot apps that were built using the Spring Cloud Stream and Spring Cloud Task microservice frameworks. Spring Cloud Data Flow supports a variety of data processing use cases including ETL, import/export, event streaming and predictive analytics. Spring Cloud Data Flow server uses Spring Cloud Deployer to deploy data pipelines made from Spring Cloud Stream and Spring Cloud Task applications onto modern platforms like Cloud Foundry or Kubernetes. Pre-built stream and task/batch starter applications for different data integration and processing scenarios allow for experimentation and learning. You can create custom stream and task apps that target different middleware or services using the Spring Boot programming model.
  • 10
    DataKitchen Reviews
    You can regain control over your data pipelines and instantly deliver value without any errors. DataKitchen™, DataOps platforms automate and coordinate all people, tools and environments within your entire data analytics organization. This includes everything from orchestration, testing and monitoring, development, and deployment. You already have the tools you need. Our platform automates your multi-tool, multienvironment pipelines from data access to value delivery. Add automated tests to every node of your production and development pipelines to catch costly and embarrassing errors before they reach the end user. In minutes, you can create repeatable work environments that allow teams to make changes or experiment without interrupting production. With a click, you can instantly deploy new features to production. Your teams can be freed from the tedious, manual work that hinders innovation.
  • Previous
  • You're on page 1
  • Next