Best Data Pipeline Software for dbt

Find and compare the best Data Pipeline software for dbt in 2024

Use the comparison tool below to compare the top Data Pipeline software for dbt on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Dagster+ Reviews

    Dagster+

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 2
    Openbridge Reviews

    Openbridge

    Openbridge

    $149 per month
    Discover insights to boost sales growth with code-free, fully automated data pipelines to data lakes and cloud warehouses. Flexible, standards-based platform that unifies sales and marketing data to automate insights and smarter growth. Say goodbye to manual data downloads that are expensive and messy. You will always know exactly what you'll be charged and only pay what you actually use. Access to data-ready data is a great way to fuel your tools. We only work with official APIs as certified developers. Data pipelines from well-known sources are easy to use. These data pipelines are pre-built, pre-transformed and ready to go. Unlock data from Amazon Vendor Central and Amazon Seller Central, Instagram Stories. Teams can quickly and economically realize the value of their data with code-free data ingestion and transformation. Databricks, Amazon Redshift and other trusted data destinations like Databricks or Amazon Redshift ensure that data is always protected.
  • 3
    DataOps.live Reviews
    Create a scalable architecture that treats data products as first-class citizens. Automate and repurpose data products. Enable compliance and robust data governance. Control the costs of your data products and pipelines for Snowflake. This global pharmaceutical giant's data product teams can benefit from next-generation analytics using self-service data and analytics infrastructure that includes Snowflake and other tools that use a data mesh approach. The DataOps.live platform allows them to organize and benefit from next generation analytics. DataOps is a unique way for development teams to work together around data in order to achieve rapid results and improve customer service. Data warehousing has never been paired with agility. DataOps is able to change all of this. Governance of data assets is crucial, but it can be a barrier to agility. Dataops enables agility and increases governance. DataOps does not refer to technology; it is a way of thinking.
  • 4
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 5
    Meltano Reviews
    Meltano offers the most flexibility in deployment options. You control your data stack from beginning to end. Since years, a growing number of connectors has been in production. You can run workflows in isolated environments and execute end-to-end testing. You can also version control everything. Open source gives you the power and flexibility to create your ideal data stack. You can easily define your entire project in code and work confidently with your team. The Meltano CLI allows you to quickly create your project and make it easy to replicate data. Meltano was designed to be the most efficient way to run dbt and manage your transformations. Your entire data stack can be defined in your project. This makes it easy to deploy it to production.
  • 6
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • 7
    Pantomath Reviews
    Data-driven organizations are constantly striving to become more data-driven. They build dashboards, analytics and data pipelines throughout the modern data stack. Unfortunately, data reliability issues are a major problem for most organizations, leading to poor decisions and a lack of trust in the data as an organisation, which directly impacts their bottom line. Resolving complex issues is a time-consuming and manual process that involves multiple teams, all of whom rely on tribal knowledge. They manually reverse-engineer complex data pipelines across various platforms to identify the root-cause and to understand the impact. Pantomath, a data pipeline traceability and observability platform, automates data operations. It continuously monitors datasets across the enterprise data ecosystem, providing context to complex data pipes by creating automated cross platform technical pipeline lineage.
  • 8
    definity Reviews
    You can monitor and control all the actions of your data pipelines without changing any code. Monitor data and pipelines to prevent downtime proactively and quickly identify root causes. Optimize pipeline runs, job performance and cost to maintain SLAs and save money. Accelerate platform upgrades and code deployments while maintaining reliability and performance. Data & Performance checks in line with pipelines. Checking input data before pipelines are even run. Preemption of runs by automatic means. Definity eliminates the need to build end-to-end coverage so that you are protected in every dimension. Definity shifts observability into post-production in order to achieve ubiquity and increase coverage while reducing manual effort. Definity agents run automatically with every pipeline and leave no footprint. Every data asset can be viewed in a single view, including pipelines, infrastructure, lineage and code. Avoid async checking by detecting in-run. Preempt all runs, including inputs.
  • Previous
  • You're on page 1
  • Next