Best Data Pipeline Software for Apache Druid

Find and compare the best Data Pipeline software for Apache Druid in 2024

Use the comparison tool below to compare the top Data Pipeline software for Apache Druid on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Apache Kafka Reviews

    Apache Kafka

    The Apache Software Foundation

    1 Rating
    Apache Kafka®, is an open-source distributed streaming platform.
  • 2
    Astro Reviews
    Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration.
  • 3
    Gravity Data Reviews
    Gravity's mission, to make streaming data from over 100 sources easy and only pay for what you use, is Gravity. Gravity eliminates the need for engineering teams to deliver streaming pipelines. It provides a simple interface that allows streaming to be set up in minutes using event data, databases, and APIs. All members of the data team can now create with a simple point-and-click interface so you can concentrate on building apps, services, and customer experiences. For quick diagnosis and resolution, full Execution trace and detailed error messages are available. We have created new, feature-rich methods to help you quickly get started. You can set up bulk, default schemas, and select data to access different job modes and statuses. Our intelligent engine will keep your pipelines running, so you spend less time managing infrastructure and more time analysing it. Gravity integrates into your systems for notifications, orchestration, and orchestration.
  • 4
    Apache Airflow Reviews

    Apache Airflow

    The Apache Software Foundation

    Airflow is a community-created platform that allows programmatically to schedule, author, and monitor workflows. Airflow is modular in architecture and uses a message queue for managing a large number of workers. Airflow can scale to infinity. Airflow pipelines can be defined in Python to allow for dynamic pipeline generation. This allows you to write code that dynamically creates pipelines. You can easily define your own operators, and extend libraries to suit your environment. Airflow pipelines can be both explicit and lean. The Jinja templating engine is used to create parametrization in the core of Airflow pipelines. No more XML or command-line black-magic! You can use standard Python features to create your workflows. This includes date time formats for scheduling, loops to dynamically generate task tasks, and loops for scheduling. This allows you to be flexible when creating your workflows.
  • Previous
  • You're on page 1
  • Next