Best Data Management Software for Unravel

Find and compare the best Data Management software for Unravel in 2024

Use the comparison tool below to compare the top Data Management software for Unravel on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud Platform Reviews
    Top Pick

    Google Cloud Platform

    Google

    Free ($300 in free credits)
    55,132 Ratings
    See Software
    Learn More
    Google Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size. Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge. Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging.
  • 2
    Cloudera Reviews
    Secure and manage the data lifecycle, from Edge to AI in any cloud or data centre. Operates on all major public clouds as well as the private cloud with a public experience everywhere. Integrates data management and analytics experiences across the entire data lifecycle. All environments are covered by security, compliance, migration, metadata management. Open source, extensible, and open to multiple data stores. Self-service analytics that is faster, safer, and easier to use. Self-service access to multi-function, integrated analytics on centrally managed business data. This allows for consistent experiences anywhere, whether it is in the cloud or hybrid. You can enjoy consistent data security, governance and lineage as well as deploying the cloud analytics services that business users need. This eliminates the need for shadow IT solutions.
  • 3
    Google Cloud Dataproc Reviews
    Dataproc makes it easy to process open source data and analytic processing in the cloud. Faster build custom OSS clusters for custom machines Dataproc can speed up your data and analytics processing, whether you need more memory for Presto or GPUs to run Apache Spark machine learning. It spins up a cluster in less than 90 seconds. Cluster management is easy and affordable Dataproc offers autoscaling, idle cluster deletion and per-second pricing. This allows you to focus your time and resources on other areas. Security built in by default Encryption by default ensures that no data is left unprotected. Component Gateway and JobsAPI allow you to define permissions for Cloud IAM clusters without the need to set up gateway or networking nodes.
  • 4
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 5
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    Apache Hadoop is a software library that allows distributed processing of large data sets across multiple computers. It uses simple programming models. It can scale from one server to thousands of machines and offer local computations and storage. Instead of relying on hardware to provide high-availability, it is designed to detect and manage failures at the application layer. This allows for highly-available services on top of a cluster computers that may be susceptible to failures.
  • 6
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 7
    Amazon EMR Reviews
    Amazon EMR is the market-leading cloud big data platform. It processes large amounts of data with open source tools like Apache Spark, Apache Hive and Apache HBase. EMR allows you to run petabyte-scale analysis at a fraction of the cost of traditional on premises solutions. It is also 3x faster than standard Apache Spark. You can spin up and down clusters for short-running jobs and only pay per second for the instances. You can also create highly available clusters that scale automatically to meet the demand for long-running workloads. You can also run EMR clusters from AWS Outposts if you have on-premises open source tools like Apache Spark or Apache Hive.
  • 8
    HPE Ezmeral Reviews

    HPE Ezmeral

    Hewlett Packard Enterprise

    Manage, control, secure, and manage the apps, data, and IT that run your business from edge to cloud. HPE Ezmeral accelerates digital transformation initiatives by shifting resources and time from IT operations to innovation. Modernize your apps. Simplify your operations. You can harness data to transform insights into impact. Kubernetes can be deployed at scale in your data center or on the edge. It integrates persistent data storage to allow app modernization on baremetal or VMs. This will accelerate time-to-value. Operationalizing the entire process to build data pipelines will allow you to harness data faster and gain insights. DevOps agility is key to machine learning's lifecycle. This will enable you to deliver a unified data network. Automation and advanced artificial intelligence can increase efficiency and agility in IT Ops. Provide security and control to reduce risk and lower costs. The HPE Ezmeral Container Platform is an enterprise-grade platform that deploys Kubernetes at large scale for a wide variety of uses.
  • Previous
  • You're on page 1
  • Next