Best Data Management Software for Plotly Dash

Find and compare the best Data Management software for Plotly Dash in 2024

Use the comparison tool below to compare the top Data Management software for Plotly Dash on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    MATLAB Reviews
    Top Pick
    MATLAB®, a combination of a desktop environment for iterative analysis, design processes, and a programming language that expresses matrix or array mathematics directly, is MATLAB®. It also includes the Live Editor, which allows you to create scripts that combine output, code, and formatted text in an executable notebook. MATLAB toolboxes have been professionally developed, tested and documented. MATLAB apps allow you to see how different algorithms interact with your data. You can repeat the process until you get the results you desire. Then, MATLAB will automatically generate a program to replicate or automate your work. With minor code changes, you can scale your analyses to run on GPUs, clusters, and clouds. You don't need to rewrite any code or learn big-data programming and other out-of-memory methods. Convert MATLAB algorithms automatically to C/C++ and HDL to run on your embedded processor/FPGA/ASIC. Simulink works with MATLAB to support Model-Based Design.
  • 2
    Tableau Reviews
    Top Pick
    Tableau, a comprehensive business intelligence (BI/analytics) solution, allows you to generate, analyze, and interpret business data. Tableau allows users to gather data from many sources, including spreadsheets, SQL databases and Salesforce. Tableau offers real-time visual analytics as well as an interactive dashboard that allows users to slice and dice data to make relevant insights and find new opportunities. Tableau allows users to customize the platform for different industry verticals such as communication, banking, and more.
  • 3
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 4
    Spotfire Reviews

    Spotfire

    Cloud Software Group

    $25 per month
    Spotfire offers the most comprehensive analytics solution available. It allows users to explore and visualize data through advanced analytics and immersive dashboards. Spotfire Analytics delivers capabilities that are scalable, including predictive analytics and geolocation analytics. Spotfire Mods allows you to build analytic apps that are tailored to your needs quickly, repeatedly, and at scale. Spotfire's analytics platform provides a seamless experience for visual analysis, data discovery and point-and click insights. Immerse yourself interactively in both historical and real-time data. Drill down and across multiple layers of disparate data with responsive, brush-linked visualizations. Imagine and then quickly build scalable tailored analytics applications using the Spotfire Mods Framework, to get all of the power of Spotfire Software in your own fit for purpose analytics apps.
  • 5
    data.world Reviews

    data.world

    data.world

    $12 per month
    data.world is a fully managed cloud service that was built for modern data architectures. We handle all updates, migrations, maintenance. It is easy to set up with our large and growing network of pre-built integrations, including all the major cloud data warehouses. Your team must solve real business problems and not struggle with complicated data software when time-to value is important. data.world makes it simple for everyone, not just the "data people", to get clear, precise, and fast answers to any business question. Our cloud-native data catalog maps siloed, distributed data to consistent business concepts, creating an unified body of knowledge that anyone can understand, use, and find. Data.world is the home of the largest open data community in the world. It is where people come together to work on everything, from data journalism to social bot detection.
  • 6
    ThinkData Works Reviews
    ThinkData Works provides a robust catalog platform for discovering, managing, and sharing data from both internal and external sources. Enrichment solutions combine partner data with your existing datasets to produce uniquely valuable assets that can be shared across your entire organization. The ThinkData Works platform and enrichment solutions make data teams more efficient, improve project outcomes, replace multiple existing tech solutions, and provide you with a competitive advantage.
  • 7
    neptune.ai Reviews

    neptune.ai

    neptune.ai

    $49 per month
    Neptune.ai, a platform for machine learning operations, is designed to streamline tracking, organizing and sharing of experiments, and model-building. It provides a comprehensive platform for data scientists and machine-learning engineers to log, visualise, and compare model training run, datasets and hyperparameters in real-time. Neptune.ai integrates seamlessly with popular machine-learning libraries, allowing teams to efficiently manage research and production workflows. Neptune.ai's features, which include collaboration, versioning and reproducibility of experiments, enhance productivity and help ensure that machine-learning projects are transparent and well documented throughout their lifecycle.
  • 8
    Kedro Reviews
    Kedro provides the foundation for clean, data-driven code. It applies concepts from software engineering to machine-learning projects. Kedro projects provide scaffolding for complex machine-learning and data pipelines. Spend less time on "plumbing", and instead focus on solving new problems. Kedro standardizes the way data science code is written and ensures that teams can collaborate easily to solve problems. You can make a seamless transition between development and production by using exploratory code. This code can be converted into reproducible, maintainable and modular experiments. A series of lightweight connectors are used to save and upload data across a variety of file formats and file systems.
  • 9
    skills.ai Reviews

    skills.ai

    skills.ai

    $39 per month
    Boost your career and visibility with a standout presentation and analytics. Skip the tedious tasks associated with manual design and coding. Skills.ai allows you to quickly create detailed analytics using AI, ensuring that your team or yourself will be successful. Skills.ai's cutting-edge artificial-intelligence capabilities streamline the process of data analytics, allowing users to focus on data-driven decision-making and gaining insights without having to worry about complex coding. Skills' data chat makes data analysis as intuitive as talking to your favorite data analyst. With data chat, you can ask your data-related questions directly and on your terms.
  • 10
    Lyftrondata Reviews
    Lyftrondata can help you build a governed lake, data warehouse or migrate from your old database to a modern cloud-based data warehouse. Lyftrondata makes it easy to create and manage all your data workloads from one platform. This includes automatically building your warehouse and pipeline. It's easy to share the data with ANSI SQL, BI/ML and analyze it instantly. You can increase the productivity of your data professionals while reducing your time to value. All data sets can be defined, categorized, and found in one place. These data sets can be shared with experts without coding and used to drive data-driven insights. This data sharing capability is ideal for companies who want to store their data once and share it with others. You can define a dataset, apply SQL transformations, or simply migrate your SQL data processing logic into any cloud data warehouse.
  • 11
    NVIDIA RAPIDS Reviews
    The RAPIDS software library, which is built on CUDAX AI, allows you to run end-to-end data science pipelines and analytics entirely on GPUs. It uses NVIDIA®, CUDA®, primitives for low level compute optimization. However, it exposes GPU parallelism through Python interfaces and high-bandwidth memories speed through user-friendly Python interfaces. RAPIDS also focuses its attention on data preparation tasks that are common for data science and analytics. This includes a familiar DataFrame API, which integrates with a variety machine learning algorithms for pipeline accelerations without having to pay serialization fees. RAPIDS supports multi-node, multiple-GPU deployments. This allows for greatly accelerated processing and training with larger datasets. You can accelerate your Python data science toolchain by making minimal code changes and learning no new tools. Machine learning models can be improved by being more accurate and deploying them faster.
  • 12
    Zepl Reviews
    All work can be synced, searched and managed across your data science team. Zepl's powerful search allows you to discover and reuse models, code, and other data. Zepl's enterprise collaboration platform allows you to query data from Snowflake or Athena and then build your models in Python. For enhanced interactions with your data, use dynamic forms and pivoting. Zepl creates new containers every time you open your notebook. This ensures that you have the same image each time your models are run. You can invite your team members to join you in a shared space, and they will be able to work together in real-time. Or they can simply leave comments on a notebook. You can share your work with fine-grained access controls. You can allow others to read, edit, run, and share your work. This will facilitate collaboration and distribution. All notebooks can be saved and versioned automatically. An easy-to-use interface allows you to name, manage, roll back, and roll back all versions. You can also export seamlessly into Github.
  • Previous
  • You're on page 1
  • Next