Best Data Management Software for NVMesh

Find and compare the best Data Management software for NVMesh in 2025

Use the comparison tool below to compare the top Data Management software for NVMesh on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Redis Reviews
    Redis Labs is the home of Redis. Redis Enterprise is the best Redis version. Redis Enterprise is more than a cache. Redis Enterprise can be free in the cloud with NoSQL and data caching using the fastest in-memory database. Redis can be scaled, enterprise-grade resilience, massive scaling, ease of administration, and operational simplicity. Redis in the Cloud is a favorite of DevOps. Developers have access to enhanced data structures and a variety modules. This allows them to innovate faster and has a faster time-to-market. CIOs love the security and expert support of Redis, which provides 99.999% uptime. Use relational databases for active-active, geodistribution, conflict distribution, reads/writes in multiple regions to the same data set. Redis Enterprise offers flexible deployment options. Redis Labs is the home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.
  • 2
    Splunk Cloud Platform Reviews
    Splunk is a secure, reliable, and scalable service that turns data into answers. Our Splunk experts will manage your IT backend so you can concentrate on your data. Splunk's cloud-based data analytics platform is fully managed and provisioned by Splunk. In as little as two days, you can go live. Software upgrades can be managed to ensure that you have the most recent functionality. With fewer requirements, you can tap into the data's value in days. Splunk Cloud is compliant with FedRAMP security standards and assists U.S. federal agencies, their partners, and them in making confident decisions and taking decisive actions at rapid speed. Splunk's mobile apps and augmented reality, as well as natural language capabilities, can help you increase productivity and contextual insight. Splunk solutions can be extended to any location by simply typing a phrase or tapping a finger. Splunk Cloud is designed to scale, from infrastructure management to data compliance.
  • 3
    MySQL Reviews
    MySQL is the most widely used open-source database in the world. MySQL is the most popular open source database for web-based applications. It has been proven to be reliable, performant, and easy-to-use. This database is used by many high-profile web properties, including Facebook, Twitter and YouTube. It is also a popular choice for embedded databases, distributed by thousands ISVs and OEMs.
  • 4
    MongoDB Reviews
    Top Pick
    MongoDB is a distributed database that supports document-based applications and is designed for modern application developers. No other database is more productive. Our flexible document data model allows you to ship and iterate faster and provides a unified query interface that can be used for any purpose. No matter if it's your first customer, or 20 million users worldwide, you can meet your performance SLAs in every environment. You can easily ensure high availability, data integrity, and meet compliance standards for mission-critical workloads. A comprehensive suite of cloud database services that allows you to address a wide range of use cases, including transactional, analytical, search, and data visualizations. Secure mobile apps can be launched with native, edge to-cloud sync and automatic conflicts resolution. MongoDB can be run anywhere, from your laptop to the data center.
  • 5
    SAP HANA Reviews
    SAP HANA is an in-memory database with high performance that accelerates data-driven decision-making and actions. It supports all workloads and provides the most advanced analytics on multi-model data on premise and in cloud.
  • 6
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    Apache Hadoop is a software library that allows distributed processing of large data sets across multiple computers. It uses simple programming models. It can scale from one server to thousands of machines and offer local computations and storage. Instead of relying on hardware to provide high-availability, it is designed to detect and manage failures at the application layer. This allows for highly-available services on top of a cluster computers that may be susceptible to failures.
  • 7
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • Previous
  • You're on page 1
  • Next