Best Data Management Software for IBM Db2 Big SQL

Find and compare the best Data Management software for IBM Db2 Big SQL in 2024

Use the comparison tool below to compare the top Data Management software for IBM Db2 Big SQL on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    QuerySurge Reviews
    Top Pick
    QuerySurge is the smart Data Testing solution that automates the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Applications with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Big Data (Hadoop & NoSQL) Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise Application/ERP Testing Features Supported Technologies - 200+ data stores are supported QuerySurge Projects - multi-project support Data Analytics Dashboard - provides insight into your data Query Wizard - no programming required Design Library - take total control of your custom test desig BI Tester - automated business report testing Scheduling - run now, periodically or at a set time Run Dashboard - analyze test runs in real-time Reports - 100s of reports API - full RESTful API DevOps for Data - integrates into your CI/CD pipeline Test Management Integration QuerySurge will help you: - Continuously detect data issues in the delivery pipeline - Dramatically increase data validation coverage - Leverage analytics to optimize your critical data - Improve your data quality at speed
  • 2
    Cloudera Reviews
    Secure and manage the data lifecycle, from Edge to AI in any cloud or data centre. Operates on all major public clouds as well as the private cloud with a public experience everywhere. Integrates data management and analytics experiences across the entire data lifecycle. All environments are covered by security, compliance, migration, metadata management. Open source, extensible, and open to multiple data stores. Self-service analytics that is faster, safer, and easier to use. Self-service access to multi-function, integrated analytics on centrally managed business data. This allows for consistent experiences anywhere, whether it is in the cloud or hybrid. You can enjoy consistent data security, governance and lineage as well as deploying the cloud analytics services that business users need. This eliminates the need for shadow IT solutions.
  • 3
    IBM Db2 Reviews
    IBM Db2®, a family of hybrid data management tools, offers a complete suite AI-empowered capabilities to help you manage structured and unstructured data both on premises and in private and public clouds. Db2 is built upon an intelligent common SQL engine that allows for flexibility and scalability.
  • 4
    IBM Cloud Pak for Data Reviews
    Unutilized data is the biggest obstacle to scaling AI-powered decision making. IBM Cloud Pak®, for Data is a unified platform that provides a data fabric to connect, access and move siloed data across multiple clouds or on premises. Automate policy enforcement and discovery to simplify access to data. A modern cloud data warehouse integrates to accelerate insights. All data can be protected with privacy and usage policy enforcement. To gain faster insights, use a modern, high-performance cloud storage data warehouse. Data scientists, analysts, and developers can use a single platform to create, deploy, and manage trusted AI models in any cloud.
  • 5
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    Apache Hadoop is a software library that allows distributed processing of large data sets across multiple computers. It uses simple programming models. It can scale from one server to thousands of machines and offer local computations and storage. Instead of relying on hardware to provide high-availability, it is designed to detect and manage failures at the application layer. This allows for highly-available services on top of a cluster computers that may be susceptible to failures.
  • 6
    Cloudera Data Science Workbench Reviews
    Machine learning can be accelerated from research to production using a consistent experience that is built for your traditional platform. Cloudera Data Science Workbench, (CDSW), offers a self-service experience that data scientists will love. It allows you to access Python, R, Scala, and more directly from your web browser. You can download and test the latest frameworks and libraries in project environments that look exactly like your laptop. Cloudera Data Science Workbench allows you to connect to CDH and HDP as well as to the systems that your data science teams depend on for analysis. Cloudera Data Science Workbench allows data scientists to manage their own analytics pipelines. It includes built-in monitoring, scheduling, email alerting, and monitoring. Rapidly create and prototype machine learning projects, and then easily deploy them to production.
  • 7
    SQL Reviews
    SQL is a domain-specific programming language that allows you to access, manage, and manipulate relational databases and relational management systems.
  • Previous
  • You're on page 1
  • Next