Best Data Management Software for Hex

Find and compare the best Data Management software for Hex in 2024

Use the comparison tool below to compare the top Data Management software for Hex on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud BigQuery Reviews

    Google Cloud BigQuery

    Google

    $0.04 per slot hour
    1,686 Ratings
    See Software
    Learn More
    ANSI SQL allows you to analyze petabytes worth of data at lightning-fast speeds with no operational overhead. Analytics at scale with 26%-34% less three-year TCO than cloud-based data warehouse alternatives. You can unleash your insights with a trusted platform that is more secure and scales with you. Multi-cloud analytics solutions that allow you to gain insights from all types of data. You can query streaming data in real-time and get the most current information about all your business processes. Machine learning is built-in and allows you to predict business outcomes quickly without having to move data. With just a few clicks, you can securely access and share the analytical insights within your organization. Easy creation of stunning dashboards and reports using popular business intelligence tools right out of the box. BigQuery's strong security, governance, and reliability controls ensure high availability and a 99.9% uptime SLA. Encrypt your data by default and with customer-managed encryption keys
  • 2
    MySQL Reviews
    MySQL is the most widely used open-source database in the world. MySQL is the most popular open source database for web-based applications. It has been proven to be reliable, performant, and easy-to-use. This database is used by many high-profile web properties, including Facebook, Twitter and YouTube. It is also a popular choice for embedded databases, distributed by thousands ISVs and OEMs.
  • 3
    Snowflake Reviews

    Snowflake

    Snowflake

    $40.00 per month
    4 Ratings
    Your cloud data platform. Access to any data you need with unlimited scalability. All your data is available to you, with the near-infinite performance and concurrency required by your organization. You can seamlessly share and consume shared data across your organization to collaborate and solve your most difficult business problems. You can increase productivity and reduce time to value by collaborating with data professionals to quickly deliver integrated data solutions from any location in your organization. Our technology partners and system integrators can help you deploy Snowflake to your success, no matter if you are moving data into Snowflake.
  • 4
    SQL Server Reviews
    Microsoft SQL Server 2019 includes intelligence and security. You get more without paying extra, as well as best-in-class performance for your on-premises requirements. You can easily migrate to the cloud without having to change any code. Azure makes it easier to gain insights and make better predictions. You can use the technology you choose, including open-source, and Microsoft's innovations to help you develop. Integrate data into your apps easily and access a rich set cognitive services to build human-like intelligence on any data scale. AI is built into the data platform, so you can get insights faster from all of your data, both on-premises or in the cloud. To build an intelligence-driven company, combine your enterprise data with the world's data. You can build your apps anywhere with a flexible platform that offers a consistent experience across platforms.
  • 5
    Amazon Athena Reviews
    Amazon Athena allows you to easily analyze data in Amazon S3 with standard SQL. Athena is serverless so there is no infrastructure to maintain and you only pay for the queries you run. Athena is simple to use. Simply point to your data in Amazon S3 and define the schema. Then, you can query standard SQL. Most results are delivered in a matter of seconds. Athena makes it easy to prepare your data for analysis without the need for complicated ETL jobs. Anyone with SQL skills can quickly analyze large-scale data sets. Athena integrates with AWS Glue Data Catalog out-of-the box. This allows you to create a unified metadata repositorie across multiple services, crawl data sources and discover schemas. You can also populate your Catalog by adding new and modified partition and table definitions. Schema versioning is possible.
  • 6
    Amazon Redshift Reviews

    Amazon Redshift

    Amazon

    $0.25 per hour
    Amazon Redshift is preferred by more customers than any other cloud data storage. Redshift powers analytic workloads for Fortune 500 companies and startups, as well as everything in between. Redshift has helped Lyft grow from a startup to multi-billion-dollar enterprises. It's easier than any other data warehouse to gain new insights from all of your data. Redshift allows you to query petabytes (or more) of structured and semi-structured information across your operational database, data warehouse, and data lake using standard SQL. Redshift allows you to save your queries to your S3 database using open formats such as Apache Parquet. This allows you to further analyze other analytics services like Amazon EMR and Amazon Athena. Redshift is the fastest cloud data warehouse in the world and it gets faster each year. The new RA3 instances can be used for performance-intensive workloads to achieve up to 3x the performance compared to any cloud data warehouse.
  • 7
    dbt Reviews

    dbt

    dbt Labs

    $50 per user per month
    Data teams can collaborate as software engineering teams by using version control, quality assurance, documentation, and modularity. Analytics errors should be treated as serious as production product bugs. Analytic workflows are often manual. We believe that workflows should be designed to be executed with one command. Data teams use dbt for codifying business logic and making it available to the entire organization. This is useful for reporting, ML modeling and operational workflows. Built-in CI/CD ensures data model changes are made in the correct order through development, staging, production, and production environments. dbt Cloud offers guaranteed uptime and custom SLAs.
  • 8
    LanceDB Reviews

    LanceDB

    LanceDB

    $16.03 per month
    LanceDB is an open-source database for AI that is developer-friendly. LanceDB provides the best foundation for AI applications. From hyperscalable vector searches and advanced retrieval of RAG data to streaming training datasets and interactive explorations of large AI datasets. Installs in seconds, and integrates seamlessly with your existing data and AI tools. LanceDB is an embedded database with native object storage integration (think SQLite, DuckDB), which can be deployed anywhere. It scales down to zero when it's not being used. LanceDB is a powerful tool for rapid prototyping and hyper-scale production. It delivers lightning-fast performance in search, analytics, training, and multimodal AI data. Leading AI companies have indexed petabytes and billions of vectors, as well as text, images, videos, and other data, at a fraction the cost of traditional vector databases. More than just embedding. Filter, select and stream training data straight from object storage in order to keep GPU utilization at a high level.
  • 9
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 10
    MariaDB Reviews
    MariaDB Platform is an enterprise-level open-source database solution. It supports transactional, analytical, and hybrid workloads, as well as relational and JSON data models. It can scale from standalone databases to data warehouses to fully distributed SQL, which can execute millions of transactions per second and perform interactive, ad-hoc analytics on billions upon billions of rows. MariaDB can be deployed on prem-on commodity hardware. It is also available on all major public cloud providers and MariaDB SkySQL, a fully managed cloud database. MariaDB.com provides more information.
  • 11
    PostgreSQL Reviews

    PostgreSQL

    PostgreSQL Global Development Group

    PostgreSQL, a powerful open-source object-relational database system, has over 30 years of experience in active development. It has earned a strong reputation for reliability and feature robustness.
  • 12
    Presto Reviews

    Presto

    Presto Foundation

    Presto is an open-source distributed SQL query engine that allows interactive analytic queries against any data source, from gigabytes up to petabytes.
  • 13
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • Previous
  • You're on page 1
  • Next