Best Data Management Software for Great Expectations

Find and compare the best Data Management software for Great Expectations in 2024

Use the comparison tool below to compare the top Data Management software for Great Expectations on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Jupyter Notebook Reviews
    Open-source web application, the Jupyter Notebook, allows you to create and share documents with live code, equations, and visualizations. Data cleaning and transformation, numerical modeling, statistical modeling and data visualization are just a few of the many uses.
  • 2
    MySQL Reviews
    MySQL is the most widely used open-source database in the world. MySQL is the most popular open source database for web-based applications. It has been proven to be reliable, performant, and easy-to-use. This database is used by many high-profile web properties, including Facebook, Twitter and YouTube. It is also a popular choice for embedded databases, distributed by thousands ISVs and OEMs.
  • 3
    Snowflake Reviews

    Snowflake

    Snowflake

    $40.00 per month
    4 Ratings
    Your cloud data platform. Access to any data you need with unlimited scalability. All your data is available to you, with the near-infinite performance and concurrency required by your organization. You can seamlessly share and consume shared data across your organization to collaborate and solve your most difficult business problems. You can increase productivity and reduce time to value by collaborating with data professionals to quickly deliver integrated data solutions from any location in your organization. Our technology partners and system integrators can help you deploy Snowflake to your success, no matter if you are moving data into Snowflake.
  • 4
    SQL Server Reviews
    Microsoft SQL Server 2019 includes intelligence and security. You get more without paying extra, as well as best-in-class performance for your on-premises requirements. You can easily migrate to the cloud without having to change any code. Azure makes it easier to gain insights and make better predictions. You can use the technology you choose, including open-source, and Microsoft's innovations to help you develop. Integrate data into your apps easily and access a rich set cognitive services to build human-like intelligence on any data scale. AI is built into the data platform, so you can get insights faster from all of your data, both on-premises or in the cloud. To build an intelligence-driven company, combine your enterprise data with the world's data. You can build your apps anywhere with a flexible platform that offers a consistent experience across platforms.
  • 5
    Dagster+ Reviews

    Dagster+

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 6
    Amazon Redshift Reviews

    Amazon Redshift

    Amazon

    $0.25 per hour
    Amazon Redshift is preferred by more customers than any other cloud data storage. Redshift powers analytic workloads for Fortune 500 companies and startups, as well as everything in between. Redshift has helped Lyft grow from a startup to multi-billion-dollar enterprises. It's easier than any other data warehouse to gain new insights from all of your data. Redshift allows you to query petabytes (or more) of structured and semi-structured information across your operational database, data warehouse, and data lake using standard SQL. Redshift allows you to save your queries to your S3 database using open formats such as Apache Parquet. This allows you to further analyze other analytics services like Amazon EMR and Amazon Athena. Redshift is the fastest cloud data warehouse in the world and it gets faster each year. The new RA3 instances can be used for performance-intensive workloads to achieve up to 3x the performance compared to any cloud data warehouse.
  • 7
    Secoda Reviews

    Secoda

    Secoda

    $50 per user per month
    Secoda AI can help you generate documentation and queries from your metadata. This will save your team hundreds of hours of tedious work. Secoda AI will also generate documentation and queries based on your metadata. This will save your team hundreds of tedious hours and redundant data requests. Search across all columns, dashboards and metrics, as well as tables, dashboards and tables. AI-powered searches allow you to ask any question and receive a contextual response quickly. Answer questions. Our API allows you to integrate data discovery into your workflow, without disrupting the flow. Perform bulk updates, tag PII, manage tech debt and more. Eliminate manual errors and have complete trust in your knowledge base.
  • 8
    Astro Reviews
    Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration.
  • 9
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 10
    Prefect Reviews

    Prefect

    Prefect

    $0.0025 per successful task
    Prefect Cloud is a command centre for your workflows. You can instantly deploy from Prefect core to gain full control and oversight. Cloud's beautiful UI allows you to keep an eye on your infrastructure's health. You can stream real-time state updates and logs, launch new runs, and get critical information right when you need it. Prefect Cloud's managed orchestration ensures that your code and data are safe while Prefect Cloud's Hybrid Model keeps everything running smoothly. Cloud scheduler runs asynchronously to ensure that your runs start on the right time every time. Advanced scheduling options allow you to schedule parameter values changes and the execution environment for each run. You can set up custom actions and notifications when your workflows change. You can monitor the health of all agents connected through your cloud instance and receive custom notifications when an agent goes offline.
  • 11
    Meltano Reviews
    Meltano offers the most flexibility in deployment options. You control your data stack from beginning to end. Since years, a growing number of connectors has been in production. You can run workflows in isolated environments and execute end-to-end testing. You can also version control everything. Open source gives you the power and flexibility to create your ideal data stack. You can easily define your entire project in code and work confidently with your team. The Meltano CLI allows you to quickly create your project and make it easy to replicate data. Meltano was designed to be the most efficient way to run dbt and manage your transformations. Your entire data stack can be defined in your project. This makes it easy to deploy it to production.
  • 12
    PostgreSQL Reviews

    PostgreSQL

    PostgreSQL Global Development Group

    PostgreSQL, a powerful open-source object-relational database system, has over 30 years of experience in active development. It has earned a strong reputation for reliability and feature robustness.
  • 13
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 14
    Acryl Data Reviews
    No more data catalog ghost cities. Acryl Cloud accelerates time-to-value for data producers through Shift Left practices and an intuitive user interface for data consumers. Continuously detect data-quality incidents in real time, automate anomaly detecting to prevent breakdowns, and drive quick resolution when they occur. Acryl Cloud supports both pull-based and push-based metadata ingestion to ensure information is reliable, current, and definitive. Data should be operational. Automated Metadata Tests can be used to uncover new insights and areas for improvement. They go beyond simple visibility. Reduce confusion and speed up resolution with clear asset ownership and automatic detection. Streamlined alerts and time-based traceability are also available.
  • 15
    Apache Airflow Reviews

    Apache Airflow

    The Apache Software Foundation

    Airflow is a community-created platform that allows programmatically to schedule, author, and monitor workflows. Airflow is modular in architecture and uses a message queue for managing a large number of workers. Airflow can scale to infinity. Airflow pipelines can be defined in Python to allow for dynamic pipeline generation. This allows you to write code that dynamically creates pipelines. You can easily define your own operators, and extend libraries to suit your environment. Airflow pipelines can be both explicit and lean. The Jinja templating engine is used to create parametrization in the core of Airflow pipelines. No more XML or command-line black-magic! You can use standard Python features to create your workflows. This includes date time formats for scheduling, loops to dynamically generate task tasks, and loops for scheduling. This allows you to be flexible when creating your workflows.
  • Previous
  • You're on page 1
  • Next