Best Data Management Software for Apache Flink

Find and compare the best Data Management software for Apache Flink in 2024

Use the comparison tool below to compare the top Data Management software for Apache Flink on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    StarTree Reviews
    See Software
    Learn More
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 2
    Scalytics Connect Reviews
    Scalytics Connect combines data mesh and in-situ data processing with polystore technology, resulting in increased data scalability, increased data processing speed, and multiplying data analytics capabilities without losing privacy or security. You take advantage of all your data without wasting time with data copy or movement, enable innovation with enhanced data analytics, generative AI and federated learning (FL) developments. Scalytics Connect enables any organization to directly apply data analytics, train machine learning (ML) or generative AI (LLM) models on their installed data architecture.
  • 3
    Apache Iceberg Reviews

    Apache Iceberg

    Apache Software Foundation

    Free
    Iceberg is an efficient format for large analytical tables. Iceberg brings the simplicity and reliability of SQL tables to the world of big data. It also allows engines like Spark, Trino Flink Presto Hive Impala and Impala to work safely with the same tables at the same time. Iceberg supports SQL commands that are flexible to merge new data, update rows, and perform targeted deletions. Iceberg can eagerly write data files to improve read performance or it can use delete-deltas for faster updates. Iceberg automates the tedious, error-prone process of generating partition values for each row in a table. It also skips unnecessary files and partitions. There are no extra filters needed for fast queries and the table layout is easily updated when data or queries change.
  • 4
    Warp 10 Reviews
    Warp 10 is a modular open source platform that collects, stores, and allows you to analyze time series and sensor data. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 offers both a time series database and a powerful analysis environment, which can be used together or independently. It will allow you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The Platform is GDPR compliant and secure by design using cryptographic tokens to manage authentication and authorization. The Analytics Engine can be implemented within a large number of existing tools and ecosystems such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. From small devices to distributed clusters, Warp 10 fits your needs at any scale, and can be used in many verticals: industry, transportation, health, monitoring, finance, energy, etc.
  • 5
    Ververica Reviews
    Ververica Platform allows every company to immediately benefit from and gain insight from its data in real time. Ververica Platform is powered by Apache Flink's robust streaming platform. It provides an integrated solution for streaming analytics and stateful stream processing at scale. Ververica Platform is powered by Apache Flink and offers high throughput, low latency data processing and powerful abstractions. It also has the operational flexibility that some of the most successful data-driven companies such as Uber, Netflix, and Alibaba. Ververica Platform combines the knowledge gained from our work with large, innovative, data-driven enterprises into an accessible, cost-effective, and secure platform that is enterprise-ready.
  • 6
    DeltaStream Reviews
    DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored.
  • 7
    Apache Doris Reviews

    Apache Doris

    The Apache Software Foundation

    Free
    Apache Doris is an advanced data warehouse for real time analytics. It delivers lightning fast analytics on real-time, large-scale data. Ingestion of micro-batch data and streaming data within a second. Storage engine with upserts, appends and pre-aggregations in real-time. Optimize for high-concurrency, high-throughput queries using columnar storage engine, cost-based query optimizer, and vectorized execution engine. Federated querying for data lakes like Hive, Iceberg, and Hudi and databases like MySQL and PostgreSQL. Compound data types, such as Arrays, Maps and JSON. Variant data types to support auto datatype inference for JSON data. NGram bloomfilter for text search. Distributed design for linear scaling. Workload isolation, tiered storage and efficient resource management. Supports shared-nothing as well as the separation of storage from compute.
  • 8
    Hue Reviews
    Hue provides the best querying experience by combining the most intelligent autocomplete components and query editor. The tables and storage browses use your existing data catalog in a transparent way. Help users find the right data among thousands databases and document it themselves. Help users with their SQL queries, and use rich previews of links. Share directly from the editor in Slack. There are several apps, each specialized in one type of querying. Browsers are the first place to explore data sources. The editor excels at SQL queries. It has an intelligent autocomplete and risk alerts. Self-service troubleshooting is also available. Dashboards are primarily used to visualize indexed data, but they can also query SQL databases. The results of a search for specific cell values are highlighted. Hue has one of the most powerful SQL autocompletes on the planet to make your SQL editing experience as easy as possible.
  • 9
    GlassFlow Reviews

    GlassFlow

    GlassFlow

    $350 per month
    GlassFlow is an event-driven, serverless data pipeline platform for Python developers. It allows users to build real time data pipelines, without the need for complex infrastructure such as Kafka or Flink. GlassFlow is a platform that allows developers to define data transformations by writing Python functions. GlassFlow manages all the infrastructure, including auto-scaling and low latency. Through its Python SDK, the platform can be integrated with a variety of data sources and destinations including Google Pub/Sub and AWS Kinesis. GlassFlow offers a low-code interface that allows users to quickly create and deploy pipelines. It also has features like serverless function executions, real-time connections to APIs, alerting and reprocessing abilities, etc. The platform is designed for Python developers to make it easier to create and manage event-driven data pipes.
  • 10
    Amazon Managed Service for Apache Flink Reviews
    Amazon Managed Service For Apache Flink is used by thousands of customers to run stream-processing applications. Amazon Managed Service Apache Flink allows you to transform and analyze streaming data using Apache Flink in real-time and integrate applications with AWS services. There are no clusters or servers to manage and no computing infrastructure to install. You only pay for the resources that you use. You can build and run Apache Flink apps without having to manage resources or clusters, or set up infrastructure. Process gigabytes per second, with latencies of subseconds and respond to events instantly. Multi-AZ deployments, APIs for lifecycle management and APIs to manage application lifecycles help you deploy highly available and durable apps. Create applications that transform data and deliver it to Amazon Simple Storage Service (Amazon S3) and Amazon OpenSearch Service.
  • 11
    E-MapReduce Reviews
    EMR is an enterprise-ready big-data platform that offers cluster, job, data management and other services. It is based on open-source ecosystems such as Hadoop Spark, Kafka and Flink. Alibaba Cloud Elastic MapReduce is a big-data processing solution that runs on the Alibaba Cloud platform. EMR is built on Alibaba Cloud ECS and is based open-source Apache Spark and Apache Hadoop. EMR allows you use the Hadoop/Spark ecosystem components such as Apache Hive and Apache Kafka, Flink and Druid to analyze and process data. EMR can be used to process data stored on different Alibaba Cloud data storage services, such as Log Service (SLS), Object Storage Service(OSS), and Relational Data Service (RDS). It is easy to create clusters quickly without having to install hardware or software. Its Web interface allows you to perform all maintenance operations.
  • 12
    Foundational Reviews
    Identify code issues and optimize code in real-time. Prevent data incidents before deployment. Manage code changes that impact data from the operational database all the way to the dashboard. Data lineage is automated, allowing for analysis of every dependency, from the operational database to the reporting layer. Foundational automates the enforcement of data contracts by analyzing each repository, from upstream to downstream, directly from the source code. Use Foundational to identify and prevent code and data issues. Create controls and guardrails. Foundational can be configured in minutes without requiring any code changes.
  • 13
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    Apache Hadoop is a software library that allows distributed processing of large data sets across multiple computers. It uses simple programming models. It can scale from one server to thousands of machines and offer local computations and storage. Instead of relying on hardware to provide high-availability, it is designed to detect and manage failures at the application layer. This allows for highly-available services on top of a cluster computers that may be susceptible to failures.
  • 14
    lakeFS Reviews
    lakeFS allows you to manage your data lake in the same way as your code. Parallel pipelines can be used for experimentation as well as CI/CD of your data. This simplifies the lives of data scientists, engineers, and analysts who work in data transformation. lakeFS is an open-source platform that provides resilience and manageability for object-storage-based data lakes. lakeFS allows you to build repeatable, atomic, and versioned data lakes operations. This includes complex ETL jobs as well as data science and analysis. lakeFS is compatible with AWS S3, Azure Blob Storage, and Google Cloud Storage (GCS). It is API compatible to S3 and seamlessly integrates with all modern data frameworks like Spark, Hive AWS Athena, Presto, AWS Athena, Presto, and others. lakeFS is a Git-like branching/committing model that can scale to exabytes by using S3, GCS, and Azure Blob storage.
  • 15
    Apache Kudu Reviews

    Apache Kudu

    The Apache Software Foundation

    Kudu clusters store tables that look exactly like the tables in relational (SQL), databases. A table can have a single binary key and value or a multitude of strongly-typed attributes. Every table has a primary key that is made up of one or more columns, just like SQL. This could be a single column, such as a unique user ID, or a compound key, such as a (host.metric.timestamp) tuple to a machine-time-series database. Rows can be easily read, updated, and deleted by their primary keys. Kudu's data model is simple and easy to use. It makes it easy to port legacy applications and build new ones. You can use standard tools such as Spark or SQL engines to analyze your tables. Tables are self-describing. Kudu's APIs were designed to be simple to use.
  • 16
    Apache Hudi Reviews

    Apache Hudi

    Apache Corporation

    Hudi is a rich platform for building streaming data lakes using incremental data pipelines on a self managing database layer. It can also be optimized for regular batch processing and lake engines. Hudi keeps a timeline of all actions on the table at different times. This allows for instantaneous views and efficient retrieval of data in the order they were received. The following components make up a Hudi instant. Hudi provides efficient upserts by mapping a given Hoodie key consistently with a file ID, via an indexing mechanism. Once a record is written to a file, the mapping between record key/file group/file ID never changes. The mapped file group includes all versions of a group record.
  • 17
    VeloDB Reviews
    VeloDB, powered by Apache Doris is a modern database for real-time analytics at scale. In seconds, micro-batch data can be ingested using a push-based system. Storage engine with upserts, appends and pre-aggregations in real-time. Unmatched performance in real-time data service and interactive ad hoc queries. Not only structured data, but also semi-structured. Not only real-time analytics, but also batch processing. Not only run queries against internal data, but also work as an federated query engine to access external databases and data lakes. Distributed design to support linear scalability. Resource usage can be adjusted flexibly to meet workload requirements, whether on-premise or cloud deployment, separation or integration. Apache Doris is fully compatible and built on this open source software. Support MySQL functions, protocol, and SQL to allow easy integration with other tools.
  • 18
    Arroyo Reviews
    Scale from 0 to millions of events every second. Arroyo is shipped as a single compact binary. Run locally on MacOS, Linux or Kubernetes for development and deploy to production using Docker or Kubernetes. Arroyo is an entirely new stream processing engine that was built from the ground-up to make real time easier than batch. Arroyo has been designed so that anyone with SQL knowledge can build reliable, efficient and correct streaming pipelines. Data scientists and engineers are able to build real-time dashboards, models, and applications from end-to-end without the need for a separate streaming expert team. SQL allows you to transform, filter, aggregate and join data streams with results that are sub-second. Your streaming pipelines should not page someone because Kubernetes rescheduled your pods. Arroyo can run in a modern, elastic cloud environment, from simple container runtimes such as Fargate, to large, distributed deployments using the Kubernetes logo.
  • 19
    Gable Reviews
    Data contracts facilitate communication among data teams and developers. Don't only detect problematic changes; prevent them at the level of the application. AI-based asset tracking can detect every change from any data source. Drive adoption of data initiatives through upstream visibility and impact analyses. Data governance is a way to shift both ownership and management of data away from the user. Build data trust by communicating data quality expectations, changes and timely updates. Integrate our AI-driven technology to eliminate data issues at their source. You will find everything you need to ensure your data initiative is a success. Gable is an B2B SaaS data infrastructure that provides a collaborative platform to author and enforce contracts. Data contracts are API-based agreements that are made between software engineers who own the upstream data sources, and data engineers/analysts who consume data for machine learning models and analytics.
  • Previous
  • You're on page 1
  • Next