Best Data Management Software for DoubleCloud

Find and compare the best Data Management software for DoubleCloud in 2025

Use the comparison tool below to compare the top Data Management software for DoubleCloud on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Apache Kafka Reviews

    Apache Kafka

    The Apache Software Foundation

    1 Rating
    Apache Kafka®, is an open-source distributed streaming platform.
  • 2
    ClickHouse Reviews
    ClickHouse is an open-source OLAP database management software that is fast and easy to use. It is column-oriented, and can generate real-time analytical reports by using SQL queries. ClickHouse's performance is superior to comparable column-oriented database management software currently on the market. It processes hundreds of millions of rows to more than a million and tens if not thousands of gigabytes per second. ClickHouse makes use of all hardware available to process every query as quickly as possible. Peak processing speed for a single query is more than 2 Terabytes per Second (after decompression, only utilized columns). To reduce latency, reads in distributed setups are automatically balanced between healthy replicas. ClickHouse supports multimaster asynchronous replication, and can be deployed across multiple datacenters. Each node is equal, which prevents single points of failure.
  • 3
    Google Cloud Platform Reviews
    Top Pick

    Google Cloud Platform

    Google

    Free ($300 in free credits)
    25 Ratings
    Google Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size. Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge. Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging.
  • 4
    Apache Airflow Reviews

    Apache Airflow

    The Apache Software Foundation

    Airflow is a community-created platform that allows programmatically to schedule, author, and monitor workflows. Airflow is modular in architecture and uses a message queue for managing a large number of workers. Airflow can scale to infinity. Airflow pipelines can be defined in Python to allow for dynamic pipeline generation. This allows you to write code that dynamically creates pipelines. You can easily define your own operators, and extend libraries to suit your environment. Airflow pipelines can be both explicit and lean. The Jinja templating engine is used to create parametrization in the core of Airflow pipelines. No more XML or command-line black-magic! You can use standard Python features to create your workflows. This includes date time formats for scheduling, loops to dynamically generate task tasks, and loops for scheduling. This allows you to be flexible when creating your workflows.
  • Previous
  • You're on page 1
  • Next