Best Data Management Software for Domino Enterprise MLOps Platform

Find and compare the best Data Management software for Domino Enterprise MLOps Platform in 2024

Use the comparison tool below to compare the top Data Management software for Domino Enterprise MLOps Platform on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Anaconda Reviews
    Top Pick
    A fully-featured machine learning platform empowers enterprises to conduct real data science at scale and speed. You can spend less time managing infrastructure and tools so that you can concentrate on building machine learning applications to propel your business forward. Anaconda Enterprise removes the hassle from ML operations and puts open-source innovation at the fingertips. It provides the foundation for serious machine learning and data science production without locking you into any specific models, templates, workflows, or models. AE allows data scientists and software developers to work together to create, test, debug and deploy models using their preferred languages. AE gives developers and data scientists access to both notebooks as well as IDEs, allowing them to work more efficiently together. They can also choose between preconfigured projects and example projects. AE projects can be easily moved from one environment to the next by being automatically packaged.
  • 2
    Snowflake Reviews

    Snowflake

    Snowflake

    $40.00 per month
    4 Ratings
    Your cloud data platform. Access to any data you need with unlimited scalability. All your data is available to you, with the near-infinite performance and concurrency required by your organization. You can seamlessly share and consume shared data across your organization to collaborate and solve your most difficult business problems. You can increase productivity and reduce time to value by collaborating with data professionals to quickly deliver integrated data solutions from any location in your organization. Our technology partners and system integrators can help you deploy Snowflake to your success, no matter if you are moving data into Snowflake.
  • 3
    MATLAB Reviews
    Top Pick
    MATLAB®, a combination of a desktop environment for iterative analysis, design processes, and a programming language that expresses matrix or array mathematics directly, is MATLAB®. It also includes the Live Editor, which allows you to create scripts that combine output, code, and formatted text in an executable notebook. MATLAB toolboxes have been professionally developed, tested and documented. MATLAB apps allow you to see how different algorithms interact with your data. You can repeat the process until you get the results you desire. Then, MATLAB will automatically generate a program to replicate or automate your work. With minor code changes, you can scale your analyses to run on GPUs, clusters, and clouds. You don't need to rewrite any code or learn big-data programming and other out-of-memory methods. Convert MATLAB algorithms automatically to C/C++ and HDL to run on your embedded processor/FPGA/ASIC. Simulink works with MATLAB to support Model-Based Design.
  • 4
    Okera Reviews
    Complexity is the enemy of security. Simplify and scale fine-grained data access control. Dynamically authorize and audit every query to comply with data security and privacy regulations. Okera integrates seamlessly into your infrastructure – in the cloud, on premise, and with cloud-native and legacy tools. With Okera, data users can use data responsibly, while protecting them from inappropriately accessing data that is confidential, personally identifiable, or regulated. Okera’s robust audit capabilities and data usage intelligence deliver the real-time and historical information that data security, compliance, and data delivery teams need to respond quickly to incidents, optimize processes, and analyze the performance of enterprise data initiatives.
  • 5
    H2O.ai Reviews
    H2O.ai, the open-source leader in AI and machinelearning, has a mission to democratize AI. Our enterprise-ready platforms, which are industry-leading, are used by thousands of data scientists from over 20,000 organizations worldwide. Every company can become an AI company in financial, insurance, healthcare and retail. We also empower them to deliver real value and transform businesses.
  • 6
    NVIDIA RAPIDS Reviews
    The RAPIDS software library, which is built on CUDAX AI, allows you to run end-to-end data science pipelines and analytics entirely on GPUs. It uses NVIDIA®, CUDA®, primitives for low level compute optimization. However, it exposes GPU parallelism through Python interfaces and high-bandwidth memories speed through user-friendly Python interfaces. RAPIDS also focuses its attention on data preparation tasks that are common for data science and analytics. This includes a familiar DataFrame API, which integrates with a variety machine learning algorithms for pipeline accelerations without having to pay serialization fees. RAPIDS supports multi-node, multiple-GPU deployments. This allows for greatly accelerated processing and training with larger datasets. You can accelerate your Python data science toolchain by making minimal code changes and learning no new tools. Machine learning models can be improved by being more accurate and deploying them faster.
  • 7
    Dask Reviews
    Dask is free and open-source. It was developed in collaboration with other community projects such as NumPy and pandas. Dask uses existing Python data structures and APIs to make it easy for users to switch between NumPy/pandas and scikit-learn-powered versions. Dask's schedulers can scale to thousands of node clusters, and its algorithms have been tested at some of the most powerful supercomputers around the world. You don't necessarily need a large cluster to get started. Dask ships schedulers that can be used on personal computers. Many people use Dask to scale computations on their laptops, using multiple cores and their disk for extra storage. Dask exposes lower level APIs that allow you to build custom systems for your own applications. This allows open-source leaders to parallelize their own packages, and business leaders to scale custom business logic.
  • Previous
  • You're on page 1
  • Next