Best Data Management Software for Determined AI

Find and compare the best Data Management software for Determined AI in 2024

Use the comparison tool below to compare the top Data Management software for Determined AI on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud Platform Reviews
    Top Pick

    Google Cloud Platform

    Google

    Free ($300 in free credits)
    55,132 Ratings
    See Software
    Learn More
    Google Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size. Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge. Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging.
  • 2
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    Apache Hadoop is a software library that allows distributed processing of large data sets across multiple computers. It uses simple programming models. It can scale from one server to thousands of machines and offer local computations and storage. Instead of relying on hardware to provide high-availability, it is designed to detect and manage failures at the application layer. This allows for highly-available services on top of a cluster computers that may be susceptible to failures.
  • 3
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 4
    Apache Airflow Reviews

    Apache Airflow

    The Apache Software Foundation

    Airflow is a community-created platform that allows programmatically to schedule, author, and monitor workflows. Airflow is modular in architecture and uses a message queue for managing a large number of workers. Airflow can scale to infinity. Airflow pipelines can be defined in Python to allow for dynamic pipeline generation. This allows you to write code that dynamically creates pipelines. You can easily define your own operators, and extend libraries to suit your environment. Airflow pipelines can be both explicit and lean. The Jinja templating engine is used to create parametrization in the core of Airflow pipelines. No more XML or command-line black-magic! You can use standard Python features to create your workflows. This includes date time formats for scheduling, loops to dynamically generate task tasks, and loops for scheduling. This allows you to be flexible when creating your workflows.
  • Previous
  • You're on page 1
  • Next