Best Data Management Software for Daft

Find and compare the best Data Management software for Daft in 2024

Use the comparison tool below to compare the top Data Management software for Daft on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud Platform Reviews
    Top Pick

    Google Cloud Platform

    Google

    Free ($300 in free credits)
    55,132 Ratings
    See Software
    Learn More
    Google Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size. Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge. Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging.
  • 2
    pandas Reviews
    Pandas is an open-source data analysis and manipulation tool that is fast, flexible, flexible, and easy to use. It was built on top the Python programming language. Tools for reading and writing data between memory data structures and various formats: CSV, text files, Microsoft Excel, SQL databases and the fast HDF5 format. Intelligent data alignment and integrated handling missing data: Use a powerful group engine to perform split-apply/combine operations on data sets. Time series-functionality: date range generation and frequency conversion, moving window statistics, date shifting and lagging. You can even create domain-specific offsets and join time sequences without losing data.
  • 3
    Apache Iceberg Reviews

    Apache Iceberg

    Apache Software Foundation

    Free
    Iceberg is an efficient format for large analytical tables. Iceberg brings the simplicity and reliability of SQL tables to the world of big data. It also allows engines like Spark, Trino Flink Presto Hive Impala and Impala to work safely with the same tables at the same time. Iceberg supports SQL commands that are flexible to merge new data, update rows, and perform targeted deletions. Iceberg can eagerly write data files to improve read performance or it can use delete-deltas for faster updates. Iceberg automates the tedious, error-prone process of generating partition values for each row in a table. It also skips unnecessary files and partitions. There are no extra filters needed for fast queries and the table layout is easily updated when data or queries change.
  • 4
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 5
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 6
    Delta Lake Reviews
    Delta Lake is an open-source storage platform that allows ACID transactions to Apache Spark™, and other big data workloads. Data lakes often have multiple data pipelines that read and write data simultaneously. This makes it difficult for data engineers to ensure data integrity due to the absence of transactions. Your data lakes will benefit from ACID transactions with Delta Lake. It offers serializability, which is the highest level of isolation. Learn more at Diving into Delta Lake - Unpacking the Transaction log. Even metadata can be considered "big data" in big data. Delta Lake treats metadata the same as data and uses Spark's distributed processing power for all its metadata. Delta Lake is able to handle large tables with billions upon billions of files and partitions at a petabyte scale. Delta Lake allows developers to access snapshots of data, allowing them to revert to earlier versions for audits, rollbacks, or to reproduce experiments.
  • 7
    Apache Arrow Reviews

    Apache Arrow

    The Apache Software Foundation

    Apache Arrow is a language-independent columnar storage format for flat and hierarchical data. It's designed for efficient analytic operations with modern hardware such as CPUs and GPUs. The Arrow memory format supports zero-copy reads, which allows for lightning-fast data access with no serialization overhead. Arrow's libraries support the format and can be used to build blocks for a variety of applications, including high-performance analytics. Arrow is used by many popular projects to efficiently ship columnar data or as the basis of analytic engines. Apache Arrow is software that was created by and for developers. We believe in open, honest communication and consensus decisionmaking. We welcome all to join us. Our committers come in a variety of backgrounds and organizations.
  • Previous
  • You're on page 1
  • Next