Enterprise synthetic test data solutions. It is essential that test data accurately reflects the structure of your database or application. This means it must be easy for you to model and maintain each project. Respect the referential integrity of parent/child/sibling relations across data domains within an app database or across multiple databases used for multiple applications. Ensure consistency and integrity of synthetic attributes across applications, data sources, and targets. A customer name must match the same customer ID across multiple transactions simulated by real-time synthetic information generation. Customers need to quickly and accurately build their data model for a test project. GenRocket offers ten methods to set up your data model. XTS, DDL, Scratchpad, Presets, XSD, CSV, YAML, JSON, Spark Schema, Salesforce.