Best Data Management Software for Amundsen

Find and compare the best Data Management software for Amundsen in 2024

Use the comparison tool below to compare the top Data Management software for Amundsen on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud Platform Reviews
    Top Pick

    Google Cloud Platform

    Google

    Free ($300 in free credits)
    55,132 Ratings
    See Software
    Learn More
    Google Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size. Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge. Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging.
  • 2
    Google Cloud BigQuery Reviews

    Google Cloud BigQuery

    Google

    $0.04 per slot hour
    1,686 Ratings
    See Software
    Learn More
    ANSI SQL allows you to analyze petabytes worth of data at lightning-fast speeds with no operational overhead. Analytics at scale with 26%-34% less three-year TCO than cloud-based data warehouse alternatives. You can unleash your insights with a trusted platform that is more secure and scales with you. Multi-cloud analytics solutions that allow you to gain insights from all types of data. You can query streaming data in real-time and get the most current information about all your business processes. Machine learning is built-in and allows you to predict business outcomes quickly without having to move data. With just a few clicks, you can securely access and share the analytical insights within your organization. Easy creation of stunning dashboards and reports using popular business intelligence tools right out of the box. BigQuery's strong security, governance, and reliability controls ensure high availability and a 99.9% uptime SLA. Encrypt your data by default and with customer-managed encryption keys
  • 3
    Elasticsearch Reviews
    Elastic is a search company. Elasticsearch, Kibana Beats, Logstash, and Elasticsearch are the founders of the ElasticStack. These SaaS offerings allow data to be used in real-time and at scale for analytics, security, search, logging, security, and search. Elastic has over 100,000 members in 45 countries. Elastic's products have been downloaded more than 400 million times since their initial release. Today, thousands of organizations including Cisco, eBay and Dell, Goldman Sachs and Groupon, HP and Microsoft, as well as Netflix, Uber, Verizon and Yelp use Elastic Stack and Elastic Cloud to power mission critical systems that generate new revenue opportunities and huge cost savings. Elastic is headquartered in Amsterdam, The Netherlands and Mountain View, California. It has more than 1,000 employees in over 35 countries.
  • 4
    Apache Cassandra Reviews

    Apache Cassandra

    Apache Software Foundation

    1 Rating
    The Apache Cassandra database provides high availability and scalability without compromising performance. It is the ideal platform for mission-critical data because it offers linear scalability and demonstrated fault-tolerance with commodity hardware and cloud infrastructure. Cassandra's ability to replicate across multiple datacenters is first-in-class. This provides lower latency for your users, and the peace-of-mind that you can withstand regional outages.
  • 5
    Apache Hive Reviews

    Apache Hive

    Apache Software Foundation

    1 Rating
    Apache Hive™, a data warehouse software, facilitates the reading, writing and management of large datasets that are stored in distributed storage using SQL. Structure can be projected onto existing data. Hive provides a command line tool and a JDBC driver to allow users to connect to it. Apache Hive is an Apache Software Foundation open-source project. It was previously a subproject to Apache® Hadoop®, but it has now become a top-level project. We encourage you to read about the project and share your knowledge. To execute traditional SQL queries, you must use the MapReduce Java API. Hive provides the SQL abstraction needed to integrate SQL-like query (HiveQL), into the underlying Java. This is in addition to the Java API that implements queries.
  • 6
    MySQL Reviews
    MySQL is the most widely used open-source database in the world. MySQL is the most popular open source database for web-based applications. It has been proven to be reliable, performant, and easy-to-use. This database is used by many high-profile web properties, including Facebook, Twitter and YouTube. It is also a popular choice for embedded databases, distributed by thousands ISVs and OEMs.
  • 7
    Snowflake Reviews

    Snowflake

    Snowflake

    $40.00 per month
    4 Ratings
    Your cloud data platform. Access to any data you need with unlimited scalability. All your data is available to you, with the near-infinite performance and concurrency required by your organization. You can seamlessly share and consume shared data across your organization to collaborate and solve your most difficult business problems. You can increase productivity and reduce time to value by collaborating with data professionals to quickly deliver integrated data solutions from any location in your organization. Our technology partners and system integrators can help you deploy Snowflake to your success, no matter if you are moving data into Snowflake.
  • 8
    SQL Server Reviews
    Microsoft SQL Server 2019 includes intelligence and security. You get more without paying extra, as well as best-in-class performance for your on-premises requirements. You can easily migrate to the cloud without having to change any code. Azure makes it easier to gain insights and make better predictions. You can use the technology you choose, including open-source, and Microsoft's innovations to help you develop. Integrate data into your apps easily and access a rich set cognitive services to build human-like intelligence on any data scale. AI is built into the data platform, so you can get insights faster from all of your data, both on-premises or in the cloud. To build an intelligence-driven company, combine your enterprise data with the world's data. You can build your apps anywhere with a flexible platform that offers a consistent experience across platforms.
  • 9
    Amazon Athena Reviews
    Amazon Athena allows you to easily analyze data in Amazon S3 with standard SQL. Athena is serverless so there is no infrastructure to maintain and you only pay for the queries you run. Athena is simple to use. Simply point to your data in Amazon S3 and define the schema. Then, you can query standard SQL. Most results are delivered in a matter of seconds. Athena makes it easy to prepare your data for analysis without the need for complicated ETL jobs. Anyone with SQL skills can quickly analyze large-scale data sets. Athena integrates with AWS Glue Data Catalog out-of-the box. This allows you to create a unified metadata repositorie across multiple services, crawl data sources and discover schemas. You can also populate your Catalog by adding new and modified partition and table definitions. Schema versioning is possible.
  • 10
    Amazon Redshift Reviews

    Amazon Redshift

    Amazon

    $0.25 per hour
    Amazon Redshift is preferred by more customers than any other cloud data storage. Redshift powers analytic workloads for Fortune 500 companies and startups, as well as everything in between. Redshift has helped Lyft grow from a startup to multi-billion-dollar enterprises. It's easier than any other data warehouse to gain new insights from all of your data. Redshift allows you to query petabytes (or more) of structured and semi-structured information across your operational database, data warehouse, and data lake using standard SQL. Redshift allows you to save your queries to your S3 database using open formats such as Apache Parquet. This allows you to further analyze other analytics services like Amazon EMR and Amazon Athena. Redshift is the fastest cloud data warehouse in the world and it gets faster each year. The new RA3 instances can be used for performance-intensive workloads to achieve up to 3x the performance compared to any cloud data warehouse.
  • 11
    Vertica Reviews
    The Unified Analytics Warehouse. The Unified Analytics Warehouse is the best place to find high-performing analytics and machine learning at large scale. Tech research analysts are seeing new leaders as they strive to deliver game-changing big data analytics. Vertica empowers data-driven companies so they can make the most of their analytics initiatives. It offers advanced time-series, geospatial, and machine learning capabilities, as well as data lake integration, user-definable extensions, cloud-optimized architecture and more. Vertica's Under the Hood webcast series allows you to dive into the features of Vertica - delivered by Vertica engineers, technical experts, and others - and discover what makes it the most scalable and scalable advanced analytical data database on the market. Vertica supports the most data-driven disruptors around the globe in their pursuit for industry and business transformation.
  • 12
    IBM Db2 Reviews
    IBM Db2®, a family of hybrid data management tools, offers a complete suite AI-empowered capabilities to help you manage structured and unstructured data both on premises and in private and public clouds. Db2 is built upon an intelligent common SQL engine that allows for flexibility and scalability.
  • 13
    AWS Glue Reviews
    AWS Glue, a fully managed extract-transform-and-load (ETL) service, makes it easy for customers prepare and load their data for analysis. With just a few clicks, you can create and run ETL jobs. AWS Glue simply points to the AWS Data Catalog and AWS Glue finds your data and stores metadata (e.g. AWS Glue Data Catalog contains the table definition and schema. Once your data has been cataloged, it is immediately searchable and queryable. It is also available for ETL.
  • 14
    Apache Druid Reviews
    Apache Druid, an open-source distributed data store, is Apache Druid. Druid's core design blends ideas from data warehouses and timeseries databases to create a high-performance real-time analytics database that can be used for a wide range of purposes. Druid combines key characteristics from each of these systems into its ingestion, storage format, querying, and core architecture. Druid compresses and stores each column separately, so it only needs to read the ones that are needed for a specific query. This allows for fast scans, ranking, groupBys, and groupBys. Druid creates indexes that are inverted for string values to allow for fast search and filter. Connectors out-of-the box for Apache Kafka and HDFS, AWS S3, stream processors, and many more. Druid intelligently divides data based upon time. Time-based queries are much faster than traditional databases. Druid automatically balances servers as you add or remove servers. Fault-tolerant architecture allows for server failures to be avoided.
  • 15
    PostgreSQL Reviews

    PostgreSQL

    PostgreSQL Global Development Group

    PostgreSQL, a powerful open-source object-relational database system, has over 30 years of experience in active development. It has earned a strong reputation for reliability and feature robustness.
  • 16
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 17
    Delta Lake Reviews
    Delta Lake is an open-source storage platform that allows ACID transactions to Apache Spark™, and other big data workloads. Data lakes often have multiple data pipelines that read and write data simultaneously. This makes it difficult for data engineers to ensure data integrity due to the absence of transactions. Your data lakes will benefit from ACID transactions with Delta Lake. It offers serializability, which is the highest level of isolation. Learn more at Diving into Delta Lake - Unpacking the Transaction log. Even metadata can be considered "big data" in big data. Delta Lake treats metadata the same as data and uses Spark's distributed processing power for all its metadata. Delta Lake is able to handle large tables with billions upon billions of files and partitions at a petabyte scale. Delta Lake allows developers to access snapshots of data, allowing them to revert to earlier versions for audits, rollbacks, or to reproduce experiments.
  • 18
    Datafold Reviews
    You can prevent data outages by identifying data quality issues and fixing them before they reach production. In less than a day, you can increase your test coverage for data pipelines from 0 to 100%. Automatic regression testing across billions upon billions of rows allows you to determine the impact of every code change. Automate change management, improve data literacy and compliance, and reduce incident response times. Don't be taken by surprise by data incidents. Automated anomaly detection allows you to be the first to know about them. Datafold's ML model, which can be easily adjusted by Datafold, adapts to seasonality or trend patterns in your data to create dynamic thresholds. You can save hours trying to understand data. The Data Catalog makes it easy to search for relevant data, fields, or explore distributions with an intuitive UI. Interactive full-text search, data profiling and consolidation of metadata all in one place.
  • Previous
  • You're on page 1
  • Next