Best Data Management Software for Amazon EMR

Find and compare the best Data Management software for Amazon EMR in 2024

Use the comparison tool below to compare the top Data Management software for Amazon EMR on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    New Relic Reviews
    Top Pick
    See Software
    Learn More
    Around 25 million engineers work across dozens of distinct functions. Engineers are using New Relic as every company is becoming a software company to gather real-time insight and trending data on the performance of their software. This allows them to be more resilient and provide exceptional customer experiences. New Relic is the only platform that offers an all-in one solution. New Relic offers customers a secure cloud for all metrics and events, powerful full-stack analytics tools, and simple, transparent pricing based on usage. New Relic also has curated the largest open source ecosystem in the industry, making it simple for engineers to get started using observability.
  • 2
    Apache Hive Reviews

    Apache Hive

    Apache Software Foundation

    1 Rating
    Apache Hive™, a data warehouse software, facilitates the reading, writing and management of large datasets that are stored in distributed storage using SQL. Structure can be projected onto existing data. Hive provides a command line tool and a JDBC driver to allow users to connect to it. Apache Hive is an Apache Software Foundation open-source project. It was previously a subproject to Apache® Hadoop®, but it has now become a top-level project. We encourage you to read about the project and share your knowledge. To execute traditional SQL queries, you must use the MapReduce Java API. Hive provides the SQL abstraction needed to integrate SQL-like query (HiveQL), into the underlying Java. This is in addition to the Java API that implements queries.
  • 3
    Immuta Reviews
    Immuta's Data Access Platform is built to give data teams secure yet streamlined access to data. Every organization is grappling with complex data policies as rules and regulations around that data are ever-changing and increasing in number. Immuta empowers data teams by automating the discovery and classification of new and existing data to speed time to value; orchestrating the enforcement of data policies through Policy-as-code (PaC), data masking, and Privacy Enhancing Technologies (PETs) so that any technical or business owner can manage and keep it secure; and monitoring/auditing user and policy activity/history and how data is accessed through automation to ensure provable compliance. Immuta integrates with all of the leading cloud data platforms, including Snowflake, Databricks, Starburst, Trino, Amazon Redshift, Google BigQuery, and Azure Synapse. Our platform is able to transparently secure data access without impacting performance. With Immuta, data teams are able to speed up data access by 100x, decrease the number of policies required by 75x, and achieve provable compliance goals.
  • 4
    Protegrity Reviews
    Our platform allows businesses to use data, including its application in advanced analysis, machine learning and AI, to do great things without worrying that customers, employees or intellectual property are at risk. The Protegrity Data Protection Platform does more than just protect data. It also classifies and discovers data, while protecting it. It is impossible to protect data you don't already know about. Our platform first categorizes data, allowing users the ability to classify the type of data that is most commonly in the public domain. Once those classifications are established, the platform uses machine learning algorithms to find that type of data. The platform uses classification and discovery to find the data that must be protected. The platform protects data behind many operational systems that are essential to business operations. It also provides privacy options such as tokenizing, encryption, and privacy methods.
  • 5
    Ataccama ONE Reviews
    Ataccama is a revolutionary way to manage data and create enterprise value. Ataccama unifies Data Governance, Data Quality and Master Data Management into one AI-powered fabric that can be used in hybrid and cloud environments. This gives your business and data teams unprecedented speed and security while ensuring trust, security and governance of your data.
  • 6
    AWS Data Pipeline Reviews
    AWS Data Pipeline, a web service, allows you to reliably process and transfer data between different AWS compute- and storage services as well as on premises data sources at specific intervals. AWS Data Pipeline allows you to access your data wherever it is stored, transform it and process it at scale, then transfer it to AWS services like Amazon S3, Amazon RDS and Amazon DynamoDB. AWS Data Pipeline makes it easy to create complex data processing workloads that can be fault-tolerant, repeatable, high-availability, and reliable. You don't need to worry about resource availability, managing intertask dependencies, retrying transient errors or timeouts in individual task, or creating a fail notification system. AWS Data Pipeline allows you to move and process data previously stored in on-premises silos.
  • 7
    Prophecy Reviews

    Prophecy

    Prophecy

    $299 per month
    Prophecy allows you to connect with many more people, including data analysts and visual ETL developers. To create your pipelines, all you have to do is click and type a few SQL expressions. You will be creating high-quality, readable code for Spark or Airflow by using the Low-Code Designer. This code is then committed to your Git. Prophecy provides a gem builder that allows you to quickly create and roll out your own Frameworks. Data Quality, Encryption and new Sources are just a few examples. Prophecy offers best practices and infrastructure as managed service - making your life and operations easier! Prophecy makes it easy to create workflows that are high-performance and scale out using the cloud.
  • 8
    Progress DataDirect Reviews
    Progress DataDirect is passionate about empowering applications with enterprise data. We offer cloud and on-premises connectivity solutions for relational, NoSQL and Big Data data sources. We design solutions for thousands of companies and top vendors in analytics, data management, and BI. Our high-value connectors are designed to reduce development costs for a variety data sources. For greater security and peace of mind, you can get 24/7 support from experts around the world. For faster SQL access, connect with easy-to-use and time-saving drivers. Our mission is to keep up with the changing trends in data connectivity. If we don't have the connector you need, we will help you design it. Integrate connectivity into an application or service.
  • 9
    Apache Phoenix Reviews

    Apache Phoenix

    Apache Software Foundation

    Free
    Apache Phoenix combines the best of both worlds to enable OLTP and operational analysis in Hadoop. This allows for low-latency Hadoop applications. HBase is used as the backing store for Apache Phoenix, which combines the power of SQL and JDBC with ACID transaction support and flexibility of late bound, schema-on read capabilities from the NoSQL realm. Apache Phoenix is fully compatible with other Hadoop tools such as Spark and Hive. It also integrates with Pig, Flume and Map Reduce. Become the trusted Hadoop data platform for OLTP, operational analytics and Hadoop via well-defined APIs. Apache Phoenix compiles your SQL query into a series HBase scans and orchestrates their running to produce regular JDBC results sets. Direct use of HBase API along with coprocessors, custom filters and other tools results in performance of milliseconds or seconds for small queries.
  • 10
    Data Virtuality Reviews
    Connect and centralize data. Transform your data landscape into a flexible powerhouse. Data Virtuality is a data integration platform that allows for instant data access, data centralization, and data governance. Logical Data Warehouse combines materialization and virtualization to provide the best performance. For high data quality, governance, and speed-to-market, create your single source data truth by adding a virtual layer to your existing data environment. Hosted on-premises or in the cloud. Data Virtuality offers three modules: Pipes Professional, Pipes Professional, or Logical Data Warehouse. You can cut down on development time up to 80% Access any data in seconds and automate data workflows with SQL. Rapid BI Prototyping allows for a significantly faster time to market. Data quality is essential for consistent, accurate, and complete data. Metadata repositories can be used to improve master data management.
  • 11
    EC2 Spot Reviews

    EC2 Spot

    Amazon

    $0.01 per user, one-time payment,
    Amazon EC2 Spot instances allow you to take advantage of unused EC2 capacity within the AWS cloud. Spot Instances can be purchased at up to 90% off the On-Demand price. Spot Instances can be used for many stateless, fault-tolerant or flexible applications, such as big data and containerized workloads. Spot Instances can be used to launch and maintain applications that are running on AWS services like CloudFormation (EMR, ECS), CloudFormation, Data Pipeline, Data Pipeline, CloudFormation and AWS Batch. To further optimize workload cost and performance, Spot Instances can be combined with On-Demand, Savings Plans Instances, RIs, and RIs. Spot Instances are able to offer the scale and cost savings necessary to run hyper-scale workloads due to AWS's operating scale.
  • 12
    Privacera Reviews
    Multi-cloud data security with a single pane of glass Industry's first SaaS access governance solution. Cloud is fragmented and data is scattered across different systems. Sensitive data is difficult to access and control due to limited visibility. Complex data onboarding hinders data scientist productivity. Data governance across services can be manual and fragmented. It can be time-consuming to securely move data to the cloud. Maximize visibility and assess the risk of sensitive data distributed across multiple cloud service providers. One system that enables you to manage multiple cloud services' data policies in a single place. Support RTBF, GDPR and other compliance requests across multiple cloud service providers. Securely move data to the cloud and enable Apache Ranger compliance policies. It is easier and quicker to transform sensitive data across multiple cloud databases and analytical platforms using one integrated system.
  • 13
    Okera Reviews
    Complexity is the enemy of security. Simplify and scale fine-grained data access control. Dynamically authorize and audit every query to comply with data security and privacy regulations. Okera integrates seamlessly into your infrastructure – in the cloud, on premise, and with cloud-native and legacy tools. With Okera, data users can use data responsibly, while protecting them from inappropriately accessing data that is confidential, personally identifiable, or regulated. Okera’s robust audit capabilities and data usage intelligence deliver the real-time and historical information that data security, compliance, and data delivery teams need to respond quickly to incidents, optimize processes, and analyze the performance of enterprise data initiatives.
  • 14
    Lyftrondata Reviews
    Lyftrondata can help you build a governed lake, data warehouse or migrate from your old database to a modern cloud-based data warehouse. Lyftrondata makes it easy to create and manage all your data workloads from one platform. This includes automatically building your warehouse and pipeline. It's easy to share the data with ANSI SQL, BI/ML and analyze it instantly. You can increase the productivity of your data professionals while reducing your time to value. All data sets can be defined, categorized, and found in one place. These data sets can be shared with experts without coding and used to drive data-driven insights. This data sharing capability is ideal for companies who want to store their data once and share it with others. You can define a dataset, apply SQL transformations, or simply migrate your SQL data processing logic into any cloud data warehouse.
  • 15
    Feast Reviews
    Your offline data can be used to make real-time predictions, without the need for custom pipelines. Data consistency is achieved between offline training and online prediction, eliminating train-serve bias. Standardize data engineering workflows within a consistent framework. Feast is used by teams to build their internal ML platforms. Feast doesn't require dedicated infrastructure to be deployed and managed. Feast reuses existing infrastructure and creates new resources as needed. You don't want a managed solution, and you are happy to manage your own implementation. Feast is supported by engineers who can help with its implementation and management. You are looking to build pipelines that convert raw data into features and integrate with another system. You have specific requirements and want to use an open-source solution.
  • 16
    Unravel Reviews
    Unravel makes data available anywhere: Azure, AWS and GCP, or in your own datacenter. Optimizing performance, troubleshooting, and cost control are all possible with Unravel. Unravel allows you to monitor, manage and improve your data pipelines on-premises and in the cloud. This will help you drive better performance in the applications that support your business. Get a single view of all your data stack. Unravel gathers performance data from every platform and system. Then, Unravel uses agentless technologies to model your data pipelines end-to-end. Analyze, correlate, and explore all of your cloud and modern data. Unravel's data models reveal dependencies, issues and opportunities. They also reveal how apps and resources have been used, and what's working. You don't need to monitor performance. Instead, you can quickly troubleshoot issues and resolve them. AI-powered recommendations can be used to automate performance improvements, lower cost, and prepare.
  • 17
    Apache HBase Reviews

    Apache HBase

    The Apache Software Foundation

    Apache HBase™, is used when you need random, real-time read/write access for your Big Data. This project aims to host very large tables, billions of rows and X million columns, on top of clusters of commodity hardware.
  • 18
    Presto Reviews

    Presto

    Presto Foundation

    Presto is an open-source distributed SQL query engine that allows interactive analytic queries against any data source, from gigabytes up to petabytes.
  • 19
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    Apache Hadoop is a software library that allows distributed processing of large data sets across multiple computers. It uses simple programming models. It can scale from one server to thousands of machines and offer local computations and storage. Instead of relying on hardware to provide high-availability, it is designed to detect and manage failures at the application layer. This allows for highly-available services on top of a cluster computers that may be susceptible to failures.
  • 20
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 21
    IBM Databand Reviews
    Monitor your data health, and monitor your pipeline performance. Get unified visibility for all pipelines that use cloud-native tools such as Apache Spark, Snowflake and BigQuery. A platform for Data Engineers that provides observability. Data engineering is becoming more complex as business stakeholders demand it. Databand can help you catch-up. More pipelines, more complexity. Data engineers are working with more complex infrastructure and pushing for faster release speeds. It is more difficult to understand why a process failed, why it is running late, and how changes impact the quality of data outputs. Data consumers are frustrated by inconsistent results, model performance, delays in data delivery, and other issues. A lack of transparency and trust in data delivery can lead to confusion about the exact source of the data. Pipeline logs, data quality metrics, and errors are all captured and stored in separate, isolated systems.
  • 22
    AWS Lake Formation Reviews
    AWS Lake Formation makes it simple to create a secure data lake in a matter of days. A data lake is a centrally managed, secured, and curated repository that stores all of your data. It can be both in its original form or prepared for analysis. Data lakes allow you to break down data silos, combine different types of analytics, and gain insights that will guide your business decisions. It is a time-consuming, manual, complex, and tedious task to set up and manage data lakes. This includes loading data from different sources, monitoring data flows, setting partitions, turning encryption on and managing keys, defining and monitoring transformation jobs, reorganizing data in a columnar format, deduplicating redundant information, and matching linked records. Once data has been loaded into a data lake, you will need to give fine-grained access and audit access over time to a wide variety of analytics and machine learning tools and services.
  • 23
    Zepl Reviews
    All work can be synced, searched and managed across your data science team. Zepl's powerful search allows you to discover and reuse models, code, and other data. Zepl's enterprise collaboration platform allows you to query data from Snowflake or Athena and then build your models in Python. For enhanced interactions with your data, use dynamic forms and pivoting. Zepl creates new containers every time you open your notebook. This ensures that you have the same image each time your models are run. You can invite your team members to join you in a shared space, and they will be able to work together in real-time. Or they can simply leave comments on a notebook. You can share your work with fine-grained access controls. You can allow others to read, edit, run, and share your work. This will facilitate collaboration and distribution. All notebooks can be saved and versioned automatically. An easy-to-use interface allows you to name, manage, roll back, and roll back all versions. You can also export seamlessly into Github.
  • 24
    Sifflet Reviews
    Automate the automatic coverage of thousands of tables using ML-based anomaly detection. 50+ custom metrics are also available. Monitoring of metadata and data. Comprehensive mapping of all dependencies between assets from ingestion to reporting. Collaboration between data consumers and data engineers is enhanced and productivity is increased. Sifflet integrates seamlessly with your data sources and preferred tools. It can run on AWS and Google Cloud Platform as well as Microsoft Azure. Keep an eye on your data's health and notify the team if quality criteria are not being met. In a matter of seconds, you can set up the basic coverage of all your tables. You can set the frequency, criticality, and even custom notifications. Use ML-based rules for any anomaly in your data. There is no need to create a new configuration. Each rule is unique because it learns from historical data as well as user feedback. A library of 50+ templates can be used to complement the automated rules.
  • 25
    Amazon SageMaker Data Wrangler Reviews
    Amazon SageMaker Data Wrangler cuts down the time it takes for data preparation and aggregation for machine learning (ML). This reduces the time taken from weeks to minutes. SageMaker Data Wrangler makes it easy to simplify the process of data preparation. It also allows you to complete every step of the data preparation workflow (including data exploration, cleansing, visualization, and scaling) using a single visual interface. SQL can be used to quickly select the data you need from a variety of data sources. The Data Quality and Insights Report can be used to automatically check data quality and detect anomalies such as duplicate rows or target leakage. SageMaker Data Wrangler has over 300 built-in data transforms that allow you to quickly transform data without having to write any code. After you've completed your data preparation workflow you can scale it up to your full datasets with SageMaker data processing jobs. You can also train, tune and deploy models using SageMaker data processing jobs.
  • Previous
  • You're on page 1
  • 2
  • Next