Best Data Lineage Tools for Looker

Find and compare the best Data Lineage tools for Looker in 2024

Use the comparison tool below to compare the top Data Lineage tools for Looker on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Datameer Reviews
    Datameer is your go-to data tool for exploring, preparing, visualizing, and cataloging Snowflake insights. From exploring raw datasets to driving business decisions – an all-in-one tool.
  • 2
    Decube Reviews
    Decube is a comprehensive data management platform designed to help organizations manage their data observability, data catalog, and data governance needs. Our platform is designed to provide accurate, reliable, and timely data, enabling organizations to make better-informed decisions. Our data observability tools provide end-to-end visibility into data, making it easier for organizations to track data origin and flow across different systems and departments. With our real-time monitoring capabilities, organizations can detect data incidents quickly and reduce their impact on business operations. The data catalog component of our platform provides a centralized repository for all data assets, making it easier for organizations to manage and govern data usage and access. With our data classification tools, organizations can identify and manage sensitive data more effectively, ensuring compliance with data privacy regulations and policies. The data governance component of our platform provides robust access controls, enabling organizations to manage data access and usage effectively. Our tools also allow organizations to generate audit reports, track user activity, and demonstrate compliance with regulatory requirements.
  • 3
    Y42 Reviews

    Y42

    Datos-Intelligence GmbH

    Y42 is the first fully managed Modern DataOps Cloud for production-ready data pipelines on top of Google BigQuery and Snowflake.
  • 4
    Select Star Reviews

    Select Star

    Select Star

    $270 per month
    In just 15 minutes, you can set up your automated data catalogue and receive column-level lines, Entity Relationship diagrams, and auto-populated documentation in 24 hours. You can easily tag, find, and add documentation to data so everyone can find the right one for them. Select Star automatically detects your column-level data lineage and displays it. Now you can trust the data by knowing where it came. Select Star automatically displays how your company uses data. This allows you to identify relevant data fields without having to ask anyone else. Select Star ensures that your data is protected with AICPA SOC2 Security, Confidentiality and Availability standards.
  • 5
    Metaplane Reviews

    Metaplane

    Metaplane

    $825 per month
    In 30 minutes, you can monitor your entire warehouse. Automated warehouse-to-BI lineage can identify downstream impacts. Trust can be lost in seconds and regained in months. With modern data-era observability, you can have peace of mind. It can be difficult to get the coverage you need with code-based tests. They take hours to create and maintain. Metaplane allows you to add hundreds of tests in minutes. Foundational tests (e.g. We support foundational tests (e.g. row counts, freshness and schema drift), more complicated tests (distribution shifts, nullness shiftings, enum modifications), custom SQL, as well as everything in between. Manual thresholds can take a while to set and quickly become outdated as your data changes. Our anomaly detection algorithms use historical metadata to detect outliers. To minimize alert fatigue, monitor what is important, while also taking into account seasonality, trends and feedback from your team. You can also override manual thresholds.
  • 6
    Masthead Reviews

    Masthead

    Masthead

    $899 per month
    View the impact of data issues in real time without running SQL. We analyze your logs to identify freshness anomalies and volume, schema changes, pipeline errors and their impact on your business. Masthead monitors each table, script, process and dashboard in your data warehouse, as well as the connected BI tools, for anomalies. It alerts data teams in real-time if data failures happen. Masthead shows data anomalies, pipeline errors and their implications on data consumers. Masthead maps lineage data issues, so you can troubleshoot in minutes, not hours. It was a game changer for us to get a comprehensive overview of all processes within GCP without having to give access our data. It saved us time and money. You can now see the cost of every pipeline in your cloud, irrespective of whether it is ETL. Masthead has AI-powered recommendations that can help you optimize your queries and models. Masthead can be connected to your data warehouse in 15 minutes.
  • 7
    Secoda Reviews

    Secoda

    Secoda

    $50 per user per month
    Secoda AI can help you generate documentation and queries from your metadata. This will save your team hundreds of hours of tedious work. Secoda AI will also generate documentation and queries based on your metadata. This will save your team hundreds of tedious hours and redundant data requests. Search across all columns, dashboards and metrics, as well as tables, dashboards and tables. AI-powered searches allow you to ask any question and receive a contextual response quickly. Answer questions. Our API allows you to integrate data discovery into your workflow, without disrupting the flow. Perform bulk updates, tag PII, manage tech debt and more. Eliminate manual errors and have complete trust in your knowledge base.
  • 8
    Foundational Reviews
    Identify code issues and optimize code in real-time. Prevent data incidents before deployment. Manage code changes that impact data from the operational database all the way to the dashboard. Data lineage is automated, allowing for analysis of every dependency, from the operational database to the reporting layer. Foundational automates the enforcement of data contracts by analyzing each repository, from upstream to downstream, directly from the source code. Use Foundational to identify and prevent code and data issues. Create controls and guardrails. Foundational can be configured in minutes without requiring any code changes.
  • 9
    Trifacta Reviews
    The fastest way to prepare data and build data pipelines in cloud. Trifacta offers visual and intelligent guidance to speed up data preparation to help you get to your insights faster. Poor data quality can cause problems in any analytics project. Trifacta helps you to understand your data and can help you quickly and accurately clean up it. All the power without any code. Trifacta offers visual and intelligent guidance to help you get to the right insights faster. Manual, repetitive data preparation processes don't scale. Trifacta makes it easy to build, deploy, and manage self-service data networks in minutes instead of months.
  • 10
    Sifflet Reviews
    Automate the automatic coverage of thousands of tables using ML-based anomaly detection. 50+ custom metrics are also available. Monitoring of metadata and data. Comprehensive mapping of all dependencies between assets from ingestion to reporting. Collaboration between data consumers and data engineers is enhanced and productivity is increased. Sifflet integrates seamlessly with your data sources and preferred tools. It can run on AWS and Google Cloud Platform as well as Microsoft Azure. Keep an eye on your data's health and notify the team if quality criteria are not being met. In a matter of seconds, you can set up the basic coverage of all your tables. You can set the frequency, criticality, and even custom notifications. Use ML-based rules for any anomaly in your data. There is no need to create a new configuration. Each rule is unique because it learns from historical data as well as user feedback. A library of 50+ templates can be used to complement the automated rules.
  • 11
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • Previous
  • You're on page 1
  • Next