Best Data Lineage Tools for Apache Spark

Find and compare the best Data Lineage tools for Apache Spark in 2024

Use the comparison tool below to compare the top Data Lineage tools for Apache Spark on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    PHEMI Health DataLab Reviews
    Unlike most data management systems, PHEMI Health DataLab is built with Privacy-by-Design principles, not as an add-on. This means privacy and data governance are built-in from the ground up, providing you with distinct advantages: Lets analysts work with data without breaching privacy guidelines Includes a comprehensive, extensible library of de-identification algorithms to hide, mask, truncate, group, and anonymize data. Creates dataset-specific or system-wide pseudonyms enabling linking and sharing of data without risking data leakage. Collects audit logs concerning not only what changes were made to the PHEMI system, but also data access patterns. Automatically generates human and machine-readable de- identification reports to meet your enterprise governance risk and compliance guidelines. Rather than a policy per data access point, PHEMI gives you the advantage of one central policy for all access patterns, whether Spark, ODBC, REST, export, and more
  • 2
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 3
    Privacera Reviews
    Multi-cloud data security with a single pane of glass Industry's first SaaS access governance solution. Cloud is fragmented and data is scattered across different systems. Sensitive data is difficult to access and control due to limited visibility. Complex data onboarding hinders data scientist productivity. Data governance across services can be manual and fragmented. It can be time-consuming to securely move data to the cloud. Maximize visibility and assess the risk of sensitive data distributed across multiple cloud service providers. One system that enables you to manage multiple cloud services' data policies in a single place. Support RTBF, GDPR and other compliance requests across multiple cloud service providers. Securely move data to the cloud and enable Apache Ranger compliance policies. It is easier and quicker to transform sensitive data across multiple cloud databases and analytical platforms using one integrated system.
  • 4
    Foundational Reviews
    Identify code issues and optimize code in real-time. Prevent data incidents before deployment. Manage code changes that impact data from the operational database all the way to the dashboard. Data lineage is automated, allowing for analysis of every dependency, from the operational database to the reporting layer. Foundational automates the enforcement of data contracts by analyzing each repository, from upstream to downstream, directly from the source code. Use Foundational to identify and prevent code and data issues. Create controls and guardrails. Foundational can be configured in minutes without requiring any code changes.
  • 5
    IBM Databand Reviews
    Monitor your data health, and monitor your pipeline performance. Get unified visibility for all pipelines that use cloud-native tools such as Apache Spark, Snowflake and BigQuery. A platform for Data Engineers that provides observability. Data engineering is becoming more complex as business stakeholders demand it. Databand can help you catch-up. More pipelines, more complexity. Data engineers are working with more complex infrastructure and pushing for faster release speeds. It is more difficult to understand why a process failed, why it is running late, and how changes impact the quality of data outputs. Data consumers are frustrated by inconsistent results, model performance, delays in data delivery, and other issues. A lack of transparency and trust in data delivery can lead to confusion about the exact source of the data. Pipeline logs, data quality metrics, and errors are all captured and stored in separate, isolated systems.
  • 6
    Kylo Reviews
    Kylo is an enterprise-ready open-source data lake management platform platform for self-service data ingestion and data preparation. It integrates metadata management, governance, security, and best practices based on Think Big's 150+ big-data implementation projects. Self-service data ingest that includes data validation, data cleansing, and automatic profiling. Visual sql and an interactive transformation through a simple user interface allow you to manage data. Search and explore data and metadata. View lineage and profile statistics. Monitor the health of feeds, services, and data lakes. Track SLAs and troubleshoot performance. To enable user self-service, create batch or streaming pipeline templates in Apache NiFi. While organizations can spend a lot of engineering effort to move data into Hadoop, they often struggle with data governance and data quality. Kylo simplifies data ingest and shifts it to data owners via a simple, guided UI.
  • 7
    Sifflet Reviews
    Automate the automatic coverage of thousands of tables using ML-based anomaly detection. 50+ custom metrics are also available. Monitoring of metadata and data. Comprehensive mapping of all dependencies between assets from ingestion to reporting. Collaboration between data consumers and data engineers is enhanced and productivity is increased. Sifflet integrates seamlessly with your data sources and preferred tools. It can run on AWS and Google Cloud Platform as well as Microsoft Azure. Keep an eye on your data's health and notify the team if quality criteria are not being met. In a matter of seconds, you can set up the basic coverage of all your tables. You can set the frequency, criticality, and even custom notifications. Use ML-based rules for any anomaly in your data. There is no need to create a new configuration. Each rule is unique because it learns from historical data as well as user feedback. A library of 50+ templates can be used to complement the automated rules.
  • Previous
  • You're on page 1
  • Next