Best Data Lineage Tools for Amazon Athena

Find and compare the best Data Lineage tools for Amazon Athena in 2025

Use the comparison tool below to compare the top Data Lineage tools for Amazon Athena on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Immuta Reviews
    Immuta's Data Access Platform is built to give data teams secure yet streamlined access to data. Every organization is grappling with complex data policies as rules and regulations around that data are ever-changing and increasing in number. Immuta empowers data teams by automating the discovery and classification of new and existing data to speed time to value; orchestrating the enforcement of data policies through Policy-as-code (PaC), data masking, and Privacy Enhancing Technologies (PETs) so that any technical or business owner can manage and keep it secure; and monitoring/auditing user and policy activity/history and how data is accessed through automation to ensure provable compliance. Immuta integrates with all of the leading cloud data platforms, including Snowflake, Databricks, Starburst, Trino, Amazon Redshift, Google BigQuery, and Azure Synapse. Our platform is able to transparently secure data access without impacting performance. With Immuta, data teams are able to speed up data access by 100x, decrease the number of policies required by 75x, and achieve provable compliance goals.
  • 2
    Privacera Reviews
    Multi-cloud data security with a single pane of glass Industry's first SaaS access governance solution. Cloud is fragmented and data is scattered across different systems. Sensitive data is difficult to access and control due to limited visibility. Complex data onboarding hinders data scientist productivity. Data governance across services can be manual and fragmented. It can be time-consuming to securely move data to the cloud. Maximize visibility and assess the risk of sensitive data distributed across multiple cloud service providers. One system that enables you to manage multiple cloud services' data policies in a single place. Support RTBF, GDPR and other compliance requests across multiple cloud service providers. Securely move data to the cloud and enable Apache Ranger compliance policies. It is easier and quicker to transform sensitive data across multiple cloud databases and analytical platforms using one integrated system.
  • 3
    Secuvy AI Reviews
    Secuvy, a next-generation cloud platform, automates data security, privacy compliance, and governance via AI-driven workflows. Unstructured data is treated with the best data intelligence. Secuvy, a next-generation cloud platform that automates data security, privacy compliance, and governance via AI-driven workflows is called Secuvy. Unstructured data is treated with the best data intelligence. Automated data discovery, customizable subjects access requests, user validations and data maps & workflows to comply with privacy regulations such as the ccpa or gdpr. Data intelligence is used to locate sensitive and private information in multiple data stores, both in motion and at rest. Our mission is to assist organizations in protecting their brand, automating processes, and improving customer trust in a world that is rapidly changing. We want to reduce human effort, costs and errors in handling sensitive data.
  • 4
    Tokern Reviews
    Open source data governance suite to manage data lakes and databases. Tokern is an easy-to-use toolkit for collecting, organizing and analysing metadata from data lakes. Runs as a command-line application for quick tasks. Run as a service to continuously collect metadata. Use reporting dashboards to analyze lineage, access control, and PII data. Or programmatically in Jupyter notebooks. Tokern is an open-source data governance suite for data lakes and databases. You can improve the ROI of your data, comply to regulations like HIPAA, CCPA, and GDPR, and protect your data from insider threats with confidence. Centralized metadata management for users, jobs, and datasets. Other data governance features are powered by this feature. Track column-level data lineage for Snowflake and AWS Redshift. You can build lineage using query history or ETL scripts. Interactive graphs and programming with APIs and SDKs allow you to explore lineage.
  • 5
    Sifflet Reviews
    Automate the automatic coverage of thousands of tables using ML-based anomaly detection. 50+ custom metrics are also available. Monitoring of metadata and data. Comprehensive mapping of all dependencies between assets from ingestion to reporting. Collaboration between data consumers and data engineers is enhanced and productivity is increased. Sifflet integrates seamlessly with your data sources and preferred tools. It can run on AWS and Google Cloud Platform as well as Microsoft Azure. Keep an eye on your data's health and notify the team if quality criteria are not being met. In a matter of seconds, you can set up the basic coverage of all your tables. You can set the frequency, criticality, and even custom notifications. Use ML-based rules for any anomaly in your data. There is no need to create a new configuration. Each rule is unique because it learns from historical data as well as user feedback. A library of 50+ templates can be used to complement the automated rules.
  • Previous
  • You're on page 1
  • Next