Best Data Lake Solutions for MySQL

Find and compare the best Data Lake solutions for MySQL in 2024

Use the comparison tool below to compare the top Data Lake solutions for MySQL on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Sprinkle Reviews

    Sprinkle

    Sprinkle Data

    $499 per month
    Businesses must adapt quickly to meet changing customer preferences and requirements. Sprinkle is an agile analytics platform that helps you meet changing customer needs. Sprinkle was created with the goal of simplifying end-to-end data analytics for organisations. It allows them to integrate data from multiple sources, change schemas, and manage pipelines. We created a platform that allows everyone in the organization to search and dig deeper into data without having to have any technical knowledge. Our team has extensive experience with data and built analytics systems for companies such as Yahoo, Inmobi, Flipkart. These companies are able to succeed because they have dedicated teams of data scientists, business analysts, and engineers who produce reports and insights. We discovered that many organizations struggle to access simple self-service reporting and data exploration. We set out to create a solution that would allow all companies to leverage data.
  • 2
    Sesame Software Reviews
    When you have the expertise of an enterprise partner combined with a scalable, easy-to-use data management suite, you can take back control of your data, access it from anywhere, ensure security and compliance, and unlock its power to grow your business. Why Use Sesame Software? Relational Junction builds, populates, and incrementally refreshes your data automatically. Enhance Data Quality - Convert data from multiple sources into a consistent format – leading to more accurate data, which provides the basis for solid decisions. Gain Insights - Automate the update of information into a central location, you can use your in-house BI tools to build useful reports to avoid costly mistakes. Fixed Price - Avoid high consumption costs with yearly fixed prices and multi-year discounts no matter your data volume.
  • 3
    Lyftrondata Reviews
    Lyftrondata can help you build a governed lake, data warehouse or migrate from your old database to a modern cloud-based data warehouse. Lyftrondata makes it easy to create and manage all your data workloads from one platform. This includes automatically building your warehouse and pipeline. It's easy to share the data with ANSI SQL, BI/ML and analyze it instantly. You can increase the productivity of your data professionals while reducing your time to value. All data sets can be defined, categorized, and found in one place. These data sets can be shared with experts without coding and used to drive data-driven insights. This data sharing capability is ideal for companies who want to store their data once and share it with others. You can define a dataset, apply SQL transformations, or simply migrate your SQL data processing logic into any cloud data warehouse.
  • 4
    Onehouse Reviews
    The only fully-managed cloud data lakehouse that can ingest data from all of your sources in minutes, and support all of your query engines on a large scale. All for a fraction the cost. With the ease of fully managed pipelines, you can ingest data from databases and event streams in near-real-time. You can query your data using any engine and support all of your use cases, including BI, AI/ML, real-time analytics and AI/ML. Simple usage-based pricing allows you to cut your costs by up to 50% compared with cloud data warehouses and ETL software. With a fully-managed, highly optimized cloud service, you can deploy in minutes and without any engineering overhead. Unify all your data into a single source and eliminate the need for data to be copied between data lakes and warehouses. Apache Hudi, Apache Iceberg and Delta Lake all offer omnidirectional interoperability, allowing you to choose the best table format for your needs. Configure managed pipelines quickly for database CDC and stream ingestion.
  • 5
    IBM watsonx.data Reviews
    Open, hybrid data lakes for AI and analytics can be used to put your data to use, wherever it is located. Connect your data in any format and from anywhere. Access it through a shared metadata layer. By matching the right workloads to the right query engines, you can optimize workloads in terms of price and performance. Integrate natural-language semantic searching without the need for SQL to unlock AI insights faster. Manage and prepare trusted datasets to improve the accuracy and relevance of your AI applications. Use all of your data everywhere. Watsonx.data offers the speed and flexibility of a warehouse, along with special features that support AI. This allows you to scale AI and analytics throughout your business. Choose the right engines to suit your workloads. You can manage your cost, performance and capability by choosing from a variety of open engines, including Presto C++ and Spark Milvus.
  • 6
    Delta Lake Reviews
    Delta Lake is an open-source storage platform that allows ACID transactions to Apache Spark™, and other big data workloads. Data lakes often have multiple data pipelines that read and write data simultaneously. This makes it difficult for data engineers to ensure data integrity due to the absence of transactions. Your data lakes will benefit from ACID transactions with Delta Lake. It offers serializability, which is the highest level of isolation. Learn more at Diving into Delta Lake - Unpacking the Transaction log. Even metadata can be considered "big data" in big data. Delta Lake treats metadata the same as data and uses Spark's distributed processing power for all its metadata. Delta Lake is able to handle large tables with billions upon billions of files and partitions at a petabyte scale. Delta Lake allows developers to access snapshots of data, allowing them to revert to earlier versions for audits, rollbacks, or to reproduce experiments.
  • 7
    Kylo Reviews
    Kylo is an enterprise-ready open-source data lake management platform platform for self-service data ingestion and data preparation. It integrates metadata management, governance, security, and best practices based on Think Big's 150+ big-data implementation projects. Self-service data ingest that includes data validation, data cleansing, and automatic profiling. Visual sql and an interactive transformation through a simple user interface allow you to manage data. Search and explore data and metadata. View lineage and profile statistics. Monitor the health of feeds, services, and data lakes. Track SLAs and troubleshoot performance. To enable user self-service, create batch or streaming pipeline templates in Apache NiFi. While organizations can spend a lot of engineering effort to move data into Hadoop, they often struggle with data governance and data quality. Kylo simplifies data ingest and shifts it to data owners via a simple, guided UI.
  • 8
    Varada Reviews
    Varada's adaptive and dynamic big data indexing solution allows you to balance cost and performance with zero data-ops. Varada's big data indexing technology is a smart acceleration layer for your data lake. It remains the single source and truth and runs in the customer's cloud environment (VPC). Varada allows data teams to democratize data. It allows them to operationalize the entire data lake and ensures interactive performance without the need for data to be moved, modelled, or manually optimized. Our ability to dynamically and automatically index relevant data at the source structure and granularity is our secret sauce. Varada allows any query to meet constantly changing performance and concurrency requirements of users and analytics API calls. It also keeps costs predictable and under control. The platform automatically determines which queries to speed up and which data to index. Varada adjusts the cluster elastically to meet demand and optimize performance and cost.
  • Previous
  • You're on page 1
  • Next