Best Data Lake Solutions for Looker

Find and compare the best Data Lake solutions for Looker in 2024

Use the comparison tool below to compare the top Data Lake solutions for Looker on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    iomete Reviews
    iomete platform combines a powerful lakehouse with an advanced data catalog, SQL editor and BI, providing you with everything you need to become data-driven.
  • 2
    Openbridge Reviews

    Openbridge

    Openbridge

    $149 per month
    Discover insights to boost sales growth with code-free, fully automated data pipelines to data lakes and cloud warehouses. Flexible, standards-based platform that unifies sales and marketing data to automate insights and smarter growth. Say goodbye to manual data downloads that are expensive and messy. You will always know exactly what you'll be charged and only pay what you actually use. Access to data-ready data is a great way to fuel your tools. We only work with official APIs as certified developers. Data pipelines from well-known sources are easy to use. These data pipelines are pre-built, pre-transformed and ready to go. Unlock data from Amazon Vendor Central and Amazon Seller Central, Instagram Stories. Teams can quickly and economically realize the value of their data with code-free data ingestion and transformation. Databricks, Amazon Redshift and other trusted data destinations like Databricks or Amazon Redshift ensure that data is always protected.
  • 3
    Hydrolix Reviews

    Hydrolix

    Hydrolix

    $2,237 per month
    Hydrolix is a streaming lake of data that combines decoupled archiving, indexed searching, and stream processing for real-time query performance on terabyte scale at a dramatically lower cost. CFOs love that data retention costs are 4x lower. Product teams appreciate having 4x more data at their disposal. Scale up resources when needed and down when not. Control costs by fine-tuning resource consumption and performance based on workload. Imagine what you could build if you didn't have budget constraints. Log data from Kafka, Kinesis and HTTP can be ingested, enhanced and transformed. No matter how large your data, you will only get the data that you need. Reduce latency, costs, and eliminate timeouts and brute-force queries. Storage is decoupled with ingest and queries, allowing them to scale independently to meet performance and cost targets. Hydrolix's HDX (high-density compress) reduces 1TB to 55GB.
  • 4
    Lyftrondata Reviews
    Lyftrondata can help you build a governed lake, data warehouse or migrate from your old database to a modern cloud-based data warehouse. Lyftrondata makes it easy to create and manage all your data workloads from one platform. This includes automatically building your warehouse and pipeline. It's easy to share the data with ANSI SQL, BI/ML and analyze it instantly. You can increase the productivity of your data professionals while reducing your time to value. All data sets can be defined, categorized, and found in one place. These data sets can be shared with experts without coding and used to drive data-driven insights. This data sharing capability is ideal for companies who want to store their data once and share it with others. You can define a dataset, apply SQL transformations, or simply migrate your SQL data processing logic into any cloud data warehouse.
  • 5
    Onehouse Reviews
    The only fully-managed cloud data lakehouse that can ingest data from all of your sources in minutes, and support all of your query engines on a large scale. All for a fraction the cost. With the ease of fully managed pipelines, you can ingest data from databases and event streams in near-real-time. You can query your data using any engine and support all of your use cases, including BI, AI/ML, real-time analytics and AI/ML. Simple usage-based pricing allows you to cut your costs by up to 50% compared with cloud data warehouses and ETL software. With a fully-managed, highly optimized cloud service, you can deploy in minutes and without any engineering overhead. Unify all your data into a single source and eliminate the need for data to be copied between data lakes and warehouses. Apache Hudi, Apache Iceberg and Delta Lake all offer omnidirectional interoperability, allowing you to choose the best table format for your needs. Configure managed pipelines quickly for database CDC and stream ingestion.
  • 6
    Harbr Reviews
    Create data products in seconds from any source, without moving data. You can make them available to anyone while still maintaining total control. Deliver powerful experiences to unlock the value. Enhance your data mesh through seamless sharing, discovery, and governance of data across domains. Unified access to high-quality products will accelerate innovation and foster collaboration. Access AI models for all users. Control the way data interacts with AI in order to protect intellectual property. Automate AI workflows for rapid integration and iteration of new capabilities. Snowflake allows you to access and build data products without having to move any data. Enjoy the ease of getting even more out of your data. Allow anyone to easily analyze data, and eliminate the need for central provisioning of infrastructure and software. Data products are seamlessly integrated with tools to ensure governance and speed up outcomes.
  • 7
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • Previous
  • You're on page 1
  • Next