Best Data Lake Solutions for Amazon Athena

Find and compare the best Data Lake solutions for Amazon Athena in 2024

Use the comparison tool below to compare the top Data Lake solutions for Amazon Athena on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Openbridge Reviews

    Openbridge

    Openbridge

    $149 per month
    Discover insights to boost sales growth with code-free, fully automated data pipelines to data lakes and cloud warehouses. Flexible, standards-based platform that unifies sales and marketing data to automate insights and smarter growth. Say goodbye to manual data downloads that are expensive and messy. You will always know exactly what you'll be charged and only pay what you actually use. Access to data-ready data is a great way to fuel your tools. We only work with official APIs as certified developers. Data pipelines from well-known sources are easy to use. These data pipelines are pre-built, pre-transformed and ready to go. Unlock data from Amazon Vendor Central and Amazon Seller Central, Instagram Stories. Teams can quickly and economically realize the value of their data with code-free data ingestion and transformation. Databricks, Amazon Redshift and other trusted data destinations like Databricks or Amazon Redshift ensure that data is always protected.
  • 2
    Lyftrondata Reviews
    Lyftrondata can help you build a governed lake, data warehouse or migrate from your old database to a modern cloud-based data warehouse. Lyftrondata makes it easy to create and manage all your data workloads from one platform. This includes automatically building your warehouse and pipeline. It's easy to share the data with ANSI SQL, BI/ML and analyze it instantly. You can increase the productivity of your data professionals while reducing your time to value. All data sets can be defined, categorized, and found in one place. These data sets can be shared with experts without coding and used to drive data-driven insights. This data sharing capability is ideal for companies who want to store their data once and share it with others. You can define a dataset, apply SQL transformations, or simply migrate your SQL data processing logic into any cloud data warehouse.
  • 3
    Onehouse Reviews
    The only fully-managed cloud data lakehouse that can ingest data from all of your sources in minutes, and support all of your query engines on a large scale. All for a fraction the cost. With the ease of fully managed pipelines, you can ingest data from databases and event streams in near-real-time. You can query your data using any engine and support all of your use cases, including BI, AI/ML, real-time analytics and AI/ML. Simple usage-based pricing allows you to cut your costs by up to 50% compared with cloud data warehouses and ETL software. With a fully-managed, highly optimized cloud service, you can deploy in minutes and without any engineering overhead. Unify all your data into a single source and eliminate the need for data to be copied between data lakes and warehouses. Apache Hudi, Apache Iceberg and Delta Lake all offer omnidirectional interoperability, allowing you to choose the best table format for your needs. Configure managed pipelines quickly for database CDC and stream ingestion.
  • 4
    AWS Lake Formation Reviews
    AWS Lake Formation makes it simple to create a secure data lake in a matter of days. A data lake is a centrally managed, secured, and curated repository that stores all of your data. It can be both in its original form or prepared for analysis. Data lakes allow you to break down data silos, combine different types of analytics, and gain insights that will guide your business decisions. It is a time-consuming, manual, complex, and tedious task to set up and manage data lakes. This includes loading data from different sources, monitoring data flows, setting partitions, turning encryption on and managing keys, defining and monitoring transformation jobs, reorganizing data in a columnar format, deduplicating redundant information, and matching linked records. Once data has been loaded into a data lake, you will need to give fine-grained access and audit access over time to a wide variety of analytics and machine learning tools and services.
  • Previous
  • You're on page 1
  • Next