Best Data Integration Tools for Microsoft Teams

Find and compare the best Data Integration tools for Microsoft Teams in 2024

Use the comparison tool below to compare the top Data Integration tools for Microsoft Teams on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Microsoft Fabric Reviews

    Microsoft Fabric

    Microsoft

    $156.334/month/2CU
    Connecting every data source with analytics services on a single AI-powered platform will transform how people access, manage, and act on data and insights. All your data. All your teams. All your teams in one place. Create an open, lake-centric hub to help data engineers connect data from various sources and curate it. This will eliminate sprawl and create custom views for all. Accelerate analysis through the development of AI models without moving data. This reduces the time needed by data scientists to deliver value. Microsoft Teams, Microsoft Excel, and Microsoft Teams are all great tools to help your team innovate faster. Connect people and data responsibly with an open, scalable solution. This solution gives data stewards more control, thanks to its built-in security, compliance, and governance.
  • 2
    Datameer Reviews
    Datameer is your go-to data tool for exploring, preparing, visualizing, and cataloging Snowflake insights. From exploring raw datasets to driving business decisions – an all-in-one tool.
  • 3
    Airbyte Reviews

    Airbyte

    Airbyte

    $2.50 per credit
    All your ELT data pipelines, including custom ones, will be up and running in minutes. Your team can focus on innovation and insights. Unify all your data integration pipelines with one open-source ELT platform. Airbyte can meet all the connector needs of your data team, no matter how complex or large they may be. Airbyte is a data integration platform that scales to meet your high-volume or custom needs. From large databases to the long tail API sources. Airbyte offers a long list of connectors with high quality that can adapt to API and schema changes. It is possible to unify all native and custom ELT. Our connector development kit allows you to quickly edit and create new connectors from pre-built open-source ones. Transparent and scalable pricing. Finally, transparent and predictable pricing that scales with data needs. No need to worry about volume. No need to create custom systems for your internal scripts or database replication.
  • 4
    Peaka Reviews

    Peaka

    Peaka

    $1 per month
    Integrate your data sources including relational and NoSQL database, SaaS and APIs. You can query them immediately as a single source of data. Process data wherever you are. Data from different sources can be merged, retrieved, and cached. Use webhooks for streaming data from Kafka or Segment into the Peaka Table. Real-time data access replaces nightly batch ingestion. Treat each data source as a relational database. Convert any API into a table and combine and join it with other data sources. Use familiar SQL to run queries on NoSQL databases. The same skills can be used to retrieve data from SQL and NoSQL database. You can query and filter your consolidated datasets to create new data sets. Use APIs to expose them and serve other apps or systems. Don't get bogged down with scripts and logs when setting up your data stack. Eliminate the burdens of managing and maintaining ETL pipelines.
  • 5
    Meltano Reviews
    Meltano offers the most flexibility in deployment options. You control your data stack from beginning to end. Since years, a growing number of connectors has been in production. You can run workflows in isolated environments and execute end-to-end testing. You can also version control everything. Open source gives you the power and flexibility to create your ideal data stack. You can easily define your entire project in code and work confidently with your team. The Meltano CLI allows you to quickly create your project and make it easy to replicate data. Meltano was designed to be the most efficient way to run dbt and manage your transformations. Your entire data stack can be defined in your project. This makes it easy to deploy it to production.
  • Previous
  • You're on page 1
  • Next