Best Data Engineering Tools for Protegrity

Find and compare the best Data Engineering tools for Protegrity in 2024

Use the comparison tool below to compare the top Data Engineering tools for Protegrity on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud BigQuery Reviews

    Google Cloud BigQuery

    Google

    $0.04 per slot hour
    1,686 Ratings
    See Tool
    Learn More
    ANSI SQL allows you to analyze petabytes worth of data at lightning-fast speeds with no operational overhead. Analytics at scale with 26%-34% less three-year TCO than cloud-based data warehouse alternatives. You can unleash your insights with a trusted platform that is more secure and scales with you. Multi-cloud analytics solutions that allow you to gain insights from all types of data. You can query streaming data in real-time and get the most current information about all your business processes. Machine learning is built-in and allows you to predict business outcomes quickly without having to move data. With just a few clicks, you can securely access and share the analytical insights within your organization. Easy creation of stunning dashboards and reports using popular business intelligence tools right out of the box. BigQuery's strong security, governance, and reliability controls ensure high availability and a 99.9% uptime SLA. Encrypt your data by default and with customer-managed encryption keys
  • 2
    Presto Reviews

    Presto

    Presto Foundation

    Presto is an open-source distributed SQL query engine that allows interactive analytic queries against any data source, from gigabytes up to petabytes.
  • 3
    Google Cloud Dataflow Reviews
    Unified stream and batch data processing that is serverless, fast, cost-effective, and low-cost. Fully managed data processing service. Automated provisioning of and management of processing resource. Horizontal autoscaling worker resources to maximize resource use Apache Beam SDK is an open-source platform for community-driven innovation. Reliable, consistent processing that works exactly once. Streaming data analytics at lightning speed Dataflow allows for faster, simpler streaming data pipeline development and lower data latency. Dataflow's serverless approach eliminates the operational overhead associated with data engineering workloads. Dataflow allows teams to concentrate on programming and not managing server clusters. Dataflow's serverless approach eliminates operational overhead from data engineering workloads, allowing teams to concentrate on programming and not managing server clusters. Dataflow automates provisioning, management, and utilization of processing resources to minimize latency.
  • 4
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • Previous
  • You're on page 1
  • Next