Best Data Engineering Tools for Kubernetes

Find and compare the best Data Engineering tools for Kubernetes in 2024

Use the comparison tool below to compare the top Data Engineering tools for Kubernetes on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    ClearML Reviews

    ClearML

    ClearML

    $15
    ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups.
  • 2
    Dataplane Reviews

    Dataplane

    Dataplane

    Free
    Dataplane's goal is to make it faster and easier to create a data mesh. It has robust data pipelines and automated workflows that can be used by businesses and teams of any size. Dataplane is more user-friendly and places a greater emphasis on performance, security, resilience, and scaling.
  • 3
    Iterative Reviews
    AI teams are faced with challenges that require new technologies. These technologies are built by us. Existing data lakes and data warehouses do not work with unstructured data like text, images, or videos. AI and software development go hand in hand. Built with data scientists, ML experts, and data engineers at heart. Don't reinvent your wheel! Production is fast and cost-effective. All your data is stored by you. Your machines are used to train your models. Existing data lakes and data warehouses do not work with unstructured data like text, images, or videos. New technologies are required for AI teams. These technologies are built by us. Studio is an extension to BitBucket, GitLab, and GitHub. Register for the online SaaS version, or contact us to start an on-premise installation
  • 4
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • 5
    IBM Databand Reviews
    Monitor your data health, and monitor your pipeline performance. Get unified visibility for all pipelines that use cloud-native tools such as Apache Spark, Snowflake and BigQuery. A platform for Data Engineers that provides observability. Data engineering is becoming more complex as business stakeholders demand it. Databand can help you catch-up. More pipelines, more complexity. Data engineers are working with more complex infrastructure and pushing for faster release speeds. It is more difficult to understand why a process failed, why it is running late, and how changes impact the quality of data outputs. Data consumers are frustrated by inconsistent results, model performance, delays in data delivery, and other issues. A lack of transparency and trust in data delivery can lead to confusion about the exact source of the data. Pipeline logs, data quality metrics, and errors are all captured and stored in separate, isolated systems.
  • 6
    witboost Reviews
    witboost allows your company to become data-driven, reduce time-to market, it expenditures, and overheads by using a modular, scalable and efficient data management system. There are a number of modules that make up witboost. These modules are building blocks that can be used as standalone solutions to solve a specific problem or to create the ideal data management system for your company. Each module enhances a specific function of data engineering and can be combined to provide the perfect solution for your specific needs. This will ensure a fast and seamless implementation and reduce time-to market, time-to value and, consequently, the TCO of your data engineering infrastructure. Smart Cities require digital twins to anticipate needs and avoid unforeseen issues, gather data from thousands of sources, and manage telematics that is ever more complicated.
  • Previous
  • You're on page 1
  • Next