Best Data Engineering Tools for Amazon Web Services (AWS)

Find and compare the best Data Engineering tools for Amazon Web Services (AWS) in 2025

Use the comparison tool below to compare the top Data Engineering tools for Amazon Web Services (AWS) on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    DataBuck Reviews
    See Tool
    Learn More
    Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
  • 2
    Composable DataOps Platform Reviews

    Composable DataOps Platform

    Composable Analytics

    $8/hr - pay-as-you-go
    4 Ratings
    Composable is an enterprise-grade DataOps platform designed for business users who want to build data-driven products and create data intelligence solutions. It can be used to design data-driven products that leverage disparate data sources, live streams, and event data, regardless of their format or structure. Composable offers a user-friendly, intuitive dataflow visual editor, built-in services that facilitate data engineering, as well as a composable architecture which allows abstraction and integration of any analytical or software approach. It is the best integrated development environment for discovering, managing, transforming, and analysing enterprise data.
  • 3
    Domo Reviews
    Top Pick
    Domo puts data to work for everyone so they can multiply their impact on the business. Underpinned by a secure data foundation, our cloud-native data experience platform makes data visible and actionable with user-friendly dashboards and apps. Domo helps companies optimize critical business processes at scale and in record time to spark bold curiosity that powers exponential business results.
  • 4
    Qrvey Reviews
    Qrvey is the only solution for embedded analytics with a built-in data lake. Qrvey saves engineering teams time and money with a turnkey solution connecting your data warehouse to your SaaS application. Qrvey’s full-stack solution includes the necessary components so that your engineering team can build less software in-house. Qrvey is built for SaaS companies that want to offer a better multi-tenant analytics experience. Qrvey's solution offers: - Built-in data lake powered by Elasticsearch - A unified data pipeline to ingest and analyze any type of data - The most embedded components - all JS, no iFrames - Fully personalizable to offer personalized experiences to users With Qrvey, you can build less software and deliver more value.
  • 5
    DQOps Reviews

    DQOps

    DQOps

    $499 per month
    DQOps is a data quality monitoring platform for data teams that helps detect and address quality issues before they impact your business. Track data quality KPIs on data quality dashboards and reach a 100% data quality score. DQOps helps monitor data warehouses and data lakes on the most popular data platforms. DQOps offers a built-in list of predefined data quality checks verifying key data quality dimensions. The extensibility of the platform allows you to modify existing checks or add custom, business-specific checks as needed. The DQOps platform easily integrates with DevOps environments and allows data quality definitions to be stored in a source repository along with the data pipeline code.
  • 6
    Prophecy Reviews

    Prophecy

    Prophecy

    $299 per month
    Prophecy allows you to connect with many more people, including data analysts and visual ETL developers. To create your pipelines, all you have to do is click and type a few SQL expressions. You will be creating high-quality, readable code for Spark or Airflow by using the Low-Code Designer. This code is then committed to your Git. Prophecy provides a gem builder that allows you to quickly create and roll out your own Frameworks. Data Quality, Encryption and new Sources are just a few examples. Prophecy offers best practices and infrastructure as managed service - making your life and operations easier! Prophecy makes it easy to create workflows that are high-performance and scale out using the cloud.
  • 7
    Chalk Reviews

    Chalk

    Chalk

    Free
    Data engineering workflows that are powerful, but without the headaches of infrastructure. Simple, reusable Python is used to define complex streaming, scheduling and data backfill pipelines. Fetch all your data in real time, no matter how complicated. Deep learning and LLMs can be used to make decisions along with structured business data. Don't pay vendors for data that you won't use. Instead, query data right before online predictions. Experiment with Jupyter and then deploy into production. Create new data workflows and prevent train-serve skew in milliseconds. Instantly monitor your data workflows and track usage and data quality. You can see everything you have computed, and the data will replay any information. Integrate with your existing tools and deploy it to your own infrastructure. Custom hold times and withdrawal limits can be set.
  • 8
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 9
    Iterative Reviews
    AI teams are faced with challenges that require new technologies. These technologies are built by us. Existing data lakes and data warehouses do not work with unstructured data like text, images, or videos. AI and software development go hand in hand. Built with data scientists, ML experts, and data engineers at heart. Don't reinvent your wheel! Production is fast and cost-effective. All your data is stored by you. Your machines are used to train your models. Existing data lakes and data warehouses do not work with unstructured data like text, images, or videos. New technologies are required for AI teams. These technologies are built by us. Studio is an extension to BitBucket, GitLab, and GitHub. Register for the online SaaS version, or contact us to start an on-premise installation
  • 10
    SiaSearch Reviews
    We want ML engineers not to have to worry about data engineering and instead focus on what they are passionate about, building better models in a shorter time. Our product is a powerful framework which makes it 10x faster and easier for developers to explore and understand visual data at scale. Automate the creation of custom interval attributes with pre-trained extractors, or any other model. Custom attributes can be used to visualize data and analyze model performance. You can query, find rare edge cases, and curate training data across your entire data lake using custom attributes. You can easily save, modify, version, comment, and share frames, sequences, or objects with colleagues and third parties. SiaSearch is a data management platform that automatically extracts frame level, contextual metadata and uses it for data exploration, selection, and evaluation. These tasks can be automated with metadata to increase engineering productivity and eliminate the bottleneck in building industrial AI.
  • 11
    AtScale Reviews
    AtScale accelerates and simplifies business intelligence. This results in better business decisions and a faster time to insight. Reduce repetitive data engineering tasks such as maintaining, curating, and delivering data for analysis. To ensure consistent KPI reporting across BI tools, you can define business definitions in one place. You can speed up the time it takes to gain insight from data and also manage cloud compute costs efficiently. No matter where your data is located, you can leverage existing data security policies to perform data analytics. AtScale's Insights models and workbooks allow you to perform Cloud OLAP multidimensional analysis using data sets from multiple providers - without any data prep or engineering. To help you quickly gain insights that you can use to make business decisions, we provide easy-to-use dimensions and measures.
  • 12
    IBM Databand Reviews
    Monitor your data health, and monitor your pipeline performance. Get unified visibility for all pipelines that use cloud-native tools such as Apache Spark, Snowflake and BigQuery. A platform for Data Engineers that provides observability. Data engineering is becoming more complex as business stakeholders demand it. Databand can help you catch-up. More pipelines, more complexity. Data engineers are working with more complex infrastructure and pushing for faster release speeds. It is more difficult to understand why a process failed, why it is running late, and how changes impact the quality of data outputs. Data consumers are frustrated by inconsistent results, model performance, delays in data delivery, and other issues. A lack of transparency and trust in data delivery can lead to confusion about the exact source of the data. Pipeline logs, data quality metrics, and errors are all captured and stored in separate, isolated systems.
  • 13
    Foghub Reviews
    Simplified IT/OT Integration, Data Engineering & Real-Time Edge Intelligence. Easy to use, cross platform, open architecture edge computing for industrial time series data. Foghub provides the Critical-Path for IT/OT convergence. It connects Operations (Sensors and Devices, and Systems) and Business (People, Processes and Applications). This allows automated data acquisition, transformations, advanced analytics, and ML. You can manage large volumes, velocity, and variety of industrial data with the out-of-the box support for all data types, most industrial network protocols, OT/lab system, and databases. Automate data collection about your production runs, batches and parts, as well as process parameters, asset condition, performance, utility costs, consumables, operators and their performance. Foghub is designed for scale and offers a wide range of capabilities to handle large volumes of data at high velocity.
  • 14
    witboost Reviews
    witboost allows your company to become data-driven, reduce time-to market, it expenditures, and overheads by using a modular, scalable and efficient data management system. There are a number of modules that make up witboost. These modules are building blocks that can be used as standalone solutions to solve a specific problem or to create the ideal data management system for your company. Each module enhances a specific function of data engineering and can be combined to provide the perfect solution for your specific needs. This will ensure a fast and seamless implementation and reduce time-to market, time-to value and, consequently, the TCO of your data engineering infrastructure. Smart Cities require digital twins to anticipate needs and avoid unforeseen issues, gather data from thousands of sources, and manage telematics that is ever more complicated.
  • 15
    DataSentics Reviews
    Data science and machine learning can have a real impact upon organizations. We are an AI product studio made up of 100 data scientists and engineers. Our experience includes both the agile world of digital startups and major international corporations. We don't stop at nice dashboards and slides. The result that counts, however, is an automated data solution in production integrated within a real process. We don't report clickers, but data scientists and engineers. We are focused on producing data science solutions in cloud with high standards for CI and automation. We aim to be the most exciting and rewarding place to work in Central Europe by attracting the best data scientists and engineers. Allowing them to leverage our collective expertise to identify and iterate on the most promising data driven opportunities for our clients as well as our own products.
  • 16
    Vaex Reviews
    Vaex.io aims to democratize the use of big data by making it available to everyone, on any device, at any scale. Your prototype is the solution to reducing development time by 80%. Create automatic pipelines for every model. Empower your data scientists. Turn any laptop into an enormous data processing powerhouse. No clusters or engineers required. We offer reliable and fast data-driven solutions. Our state-of-the art technology allows us to build and deploy machine-learning models faster than anyone else on the market. Transform your data scientists into big data engineers. We offer comprehensive training for your employees to enable you to fully utilize our technology. Memory mapping, a sophisticated Expression System, and fast Out-of-Core algorithms are combined. Visualize and explore large datasets and build machine-learning models on a single computer.
  • Previous
  • You're on page 1
  • Next