Best Data Engineering Tools for Amazon S3

Find and compare the best Data Engineering tools for Amazon S3 in 2024

Use the comparison tool below to compare the top Data Engineering tools for Amazon S3 on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Qrvey Reviews
    See Tool
    Learn More
    Qrvey is the only solution for embedded analytics with a built-in data lake. Qrvey saves engineering teams time and money with a turnkey solution connecting your data warehouse to your SaaS application. Qrvey’s full-stack solution includes the necessary components so that your engineering team can build less software in-house. Qrvey is built for SaaS companies that want to offer a better multi-tenant analytics experience. Qrvey's solution offers: - Built-in data lake powered by Elasticsearch - A unified data pipeline to ingest and analyze any type of data - The most embedded components - all JS, no iFrames - Fully personalizable to offer personalized experiences to users With Qrvey, you can build less software and deliver more value.
  • 2
    RudderStack Reviews

    RudderStack

    RudderStack

    $750/month
    RudderStack is the smart customer information pipeline. You can easily build pipelines that connect your entire customer data stack. Then, make them smarter by pulling data from your data warehouse to trigger enrichment in customer tools for identity sewing and other advanced uses cases. Start building smarter customer data pipelines today.
  • 3
    Microsoft Fabric Reviews

    Microsoft Fabric

    Microsoft

    $156.334/month/2CU
    Connecting every data source with analytics services on a single AI-powered platform will transform how people access, manage, and act on data and insights. All your data. All your teams. All your teams in one place. Create an open, lake-centric hub to help data engineers connect data from various sources and curate it. This will eliminate sprawl and create custom views for all. Accelerate analysis through the development of AI models without moving data. This reduces the time needed by data scientists to deliver value. Microsoft Teams, Microsoft Excel, and Microsoft Teams are all great tools to help your team innovate faster. Connect people and data responsibly with an open, scalable solution. This solution gives data stewards more control, thanks to its built-in security, compliance, and governance.
  • 4
    Datameer Reviews
    Datameer is your go-to data tool for exploring, preparing, visualizing, and cataloging Snowflake insights. From exploring raw datasets to driving business decisions – an all-in-one tool.
  • 5
    Dataplane Reviews

    Dataplane

    Dataplane

    Free
    Dataplane's goal is to make it faster and easier to create a data mesh. It has robust data pipelines and automated workflows that can be used by businesses and teams of any size. Dataplane is more user-friendly and places a greater emphasis on performance, security, resilience, and scaling.
  • 6
    Latitude Reviews
    Answer questions today, not next week. Latitude makes it easy to create low-code data apps within minutes. You don't need a data stack, but you can help your team answer data-related questions. Connect your data sources to Latitude and you can immediately start exploring your data. Latitude connects with your database, data warehouse, or other tools used by your team. Multiple sources can be used in the same analysis. We support over 100 data sources. Latitude offers a vast array of data sources that can be used by teams to explore and transform data. This includes using our AI SQL Assistant, visual programming, and manually writing SQL queries. Latitude combines data exploration with visualization. You can choose from tables or charts and add them to the canvas you are currently working on. Interactive views are easy to create because your canvas already knows how variables and transformations work together.
  • 7
    Mozart Data Reviews
    Mozart Data is the all-in-one modern data platform for consolidating, organizing, and analyzing your data. Set up a modern data stack in an hour, without any engineering. Start getting more out of your data and making data-driven decisions today.
  • 8
    Ascend Reviews

    Ascend

    Ascend

    $0.98 per DFC
    Ascend provides data teams with a unified platform that allows them to ingest and transform their data and create and manage their analytics engineering and data engineering workloads. Ascend is supported by DataAware intelligence. Ascend works in the background to ensure data integrity and optimize data workloads, which can reduce maintenance time by up to 90%. Ascend's multilingual flex-code interface allows you to use SQL, Java, Scala, and Python interchangeably. Quickly view data lineage and data profiles, job logs, system health, system health, and other important workload metrics at a glance. Ascend provides native connections to a growing number of data sources using our Flex-Code data connectors.
  • 9
    Chalk Reviews

    Chalk

    Chalk

    Free
    Data engineering workflows that are powerful, but without the headaches of infrastructure. Simple, reusable Python is used to define complex streaming, scheduling and data backfill pipelines. Fetch all your data in real time, no matter how complicated. Deep learning and LLMs can be used to make decisions along with structured business data. Don't pay vendors for data that you won't use. Instead, query data right before online predictions. Experiment with Jupyter and then deploy into production. Create new data workflows and prevent train-serve skew in milliseconds. Instantly monitor your data workflows and track usage and data quality. You can see everything you have computed, and the data will replay any information. Integrate with your existing tools and deploy it to your own infrastructure. Custom hold times and withdrawal limits can be set.
  • 10
    DataBuck Reviews
    Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
  • 11
    Feast Reviews
    Your offline data can be used to make real-time predictions, without the need for custom pipelines. Data consistency is achieved between offline training and online prediction, eliminating train-serve bias. Standardize data engineering workflows within a consistent framework. Feast is used by teams to build their internal ML platforms. Feast doesn't require dedicated infrastructure to be deployed and managed. Feast reuses existing infrastructure and creates new resources as needed. You don't want a managed solution, and you are happy to manage your own implementation. Feast is supported by engineers who can help with its implementation and management. You are looking to build pipelines that convert raw data into features and integrate with another system. You have specific requirements and want to use an open-source solution.
  • 12
    IBM Databand Reviews
    Monitor your data health, and monitor your pipeline performance. Get unified visibility for all pipelines that use cloud-native tools such as Apache Spark, Snowflake and BigQuery. A platform for Data Engineers that provides observability. Data engineering is becoming more complex as business stakeholders demand it. Databand can help you catch-up. More pipelines, more complexity. Data engineers are working with more complex infrastructure and pushing for faster release speeds. It is more difficult to understand why a process failed, why it is running late, and how changes impact the quality of data outputs. Data consumers are frustrated by inconsistent results, model performance, delays in data delivery, and other issues. A lack of transparency and trust in data delivery can lead to confusion about the exact source of the data. Pipeline logs, data quality metrics, and errors are all captured and stored in separate, isolated systems.
  • 13
    Molecula Reviews
    Molecula, an enterprise feature store, simplifies, speeds up, and controls big-data access to power machine scale analytics and AI. Continuously extracting features and reducing the data dimensionality at the source allows for millisecond queries, computations, and feature re-use across formats without copying or moving any raw data. The Molecula feature storage provides data engineers, data scientists and application developers with a single point of access to help them move from reporting and explaining with human scale data to predicting and prescribing business outcomes. Enterprises spend a lot of time preparing, aggregating and making multiple copies of their data before they can make any decisions with it. Molecula offers a new paradigm for continuous, real time data analysis that can be used for all mission-critical applications.
  • 14
    Sifflet Reviews
    Automate the automatic coverage of thousands of tables using ML-based anomaly detection. 50+ custom metrics are also available. Monitoring of metadata and data. Comprehensive mapping of all dependencies between assets from ingestion to reporting. Collaboration between data consumers and data engineers is enhanced and productivity is increased. Sifflet integrates seamlessly with your data sources and preferred tools. It can run on AWS and Google Cloud Platform as well as Microsoft Azure. Keep an eye on your data's health and notify the team if quality criteria are not being met. In a matter of seconds, you can set up the basic coverage of all your tables. You can set the frequency, criticality, and even custom notifications. Use ML-based rules for any anomaly in your data. There is no need to create a new configuration. Each rule is unique because it learns from historical data as well as user feedback. A library of 50+ templates can be used to complement the automated rules.
  • Previous
  • You're on page 1
  • Next