Best Data Analysis Software for Jupyter Notebook

Find and compare the best Data Analysis software for Jupyter Notebook in 2025

Use the comparison tool below to compare the top Data Analysis software for Jupyter Notebook on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Saturn Cloud Reviews
    Top Pick

    Saturn Cloud

    Saturn Cloud

    $0.005 per GB per hour
    103 Ratings
    Saturn Cloud is an AI/ML platform available on every cloud. Data teams and engineers can build, scale, and deploy their AI/ML applications with any stack.
  • 2
    Stata Reviews

    Stata

    StataCorp LLC

    $48.00/6-month/student
    Stata delivers everything you need for reproducible data analysis—powerful statistics, visualization, data manipulation, and automated reporting—all in one intuitive platform. Stata is quick and accurate. The extensive graphical interface makes it easy to use, but is also fully programable. Stata's menus, dialogs and buttons give you the best of both worlds. All Stata's data management, statistical, and graphical features are easy to access by dragging and dropping or point-and-click. To quickly execute commands, you can use Stata's intuitive command syntax. You can log all actions and results, regardless of whether you use the menus or dialogs. This will ensure reproducibility and integrity in your analysis. Stata also offers complete command-line programming and programming capabilities, including a full matrix language. All the commands that Stata ships with are available to you, whether you want to create new Stata commands or script your analysis.
  • 3
    Datameer Reviews
    Datameer is your go-to data tool for exploring, preparing, visualizing, and cataloging Snowflake insights. From exploring raw datasets to driving business decisions – an all-in-one tool.
  • 4
    Coginiti Reviews

    Coginiti

    Coginiti

    $189/user/year
    Coginiti is the AI-enabled enterprise Data Workspace that empowers everyone to get fast, consistent answers to any business questions. Coginiti helps you find and search for metrics that are approved for your use case, accelerating the lifecycle of analytic development from development to certification. Coginiti integrates the functionality needed to build, approve and curate analytics for reuse across all business domains, while adhering your data governance policies and standards. Coginiti’s collaborative data workspace is trusted by teams in the insurance, healthcare, financial services and retail/consumer packaged goods industries to deliver value to customers.
  • 5
    Google Cloud Datalab Reviews
    Cloud Datalab is a user-friendly interactive platform designed for data exploration, analysis, visualization, and machine learning. This robust tool, developed for the Google Cloud Platform, allows users to delve into, transform, and visualize data while building machine learning models efficiently. Operating on Compute Engine, it smoothly integrates with various cloud services, enabling you to concentrate on your data science projects without distractions. Built using Jupyter (previously known as IPython), Cloud Datalab benefits from a vibrant ecosystem of modules and a comprehensive knowledge base. It supports the analysis of data across BigQuery, AI Platform, Compute Engine, and Cloud Storage, utilizing Python, SQL, and JavaScript for BigQuery user-defined functions. Whether your datasets are in the megabytes or terabytes range, Cloud Datalab is equipped to handle your needs effectively. You can effortlessly query massive datasets in BigQuery, perform local analysis on sampled subsets of data, and conduct training jobs on extensive datasets within AI Platform without any interruptions. This versatility makes Cloud Datalab a valuable asset for data scientists aiming to streamline their workflows and enhance productivity.
  • 6
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics.
  • 7
    Molecula Reviews
    Molecula serves as an enterprise feature store that streamlines, enhances, and manages big data access to facilitate large-scale analytics and artificial intelligence. By consistently extracting features, minimizing data dimensionality at the source, and channeling real-time feature updates into a centralized repository, it allows for millisecond-level queries, computations, and feature re-utilization across various formats and locations without the need to duplicate or transfer raw data. This feature store grants data engineers, scientists, and application developers a unified access point, enabling them to transition from merely reporting and interpreting human-scale data to actively forecasting and recommending immediate business outcomes using comprehensive data sets. Organizations often incur substantial costs when preparing, consolidating, and creating multiple copies of their data for different projects, which delays their decision-making processes. Molecula introduces a groundbreaking approach for continuous, real-time data analysis that can be leveraged for all mission-critical applications, dramatically improving efficiency and effectiveness in data utilization. This transformation empowers businesses to make informed decisions swiftly and accurately, ensuring they remain competitive in an ever-evolving landscape.
  • 8
    Habu Reviews
    Access data from any location, even within a vast array of diverse environments. The most effective method to boost acquisition and retention is through the enrichment of data and models. By leveraging machine learning, new insights can be uncovered by integrating proprietary models, such as propensity models, with data in a secure manner, which enhances customer profiles and models while allowing for rapid scalability. Enriching data alone is insufficient; your team needs to transition smoothly from insights to actionable strategies. Automate the segmentation of audiences and deploy your campaigns instantly across various channels. Make informed targeting decisions to optimize budget utilization and reduce churn rates. Understand the optimal timing and locations for targeting efforts. Equip yourself with the necessary tools to act on data in real-time. Tracking the complete customer journey, along with the various data types involved, has always posed significant difficulties. With the increasing stringency of privacy regulations and the growing distribution of data, it is now more crucial than ever to ensure secure and straightforward access to those intent signals for effective decision-making, which will ultimately enhance overall operational efficiency.
  • 9
    Code Ocean Reviews
    The Code Ocean Computational Workbench enhances usability, coding, data tool integration, and DevOps lifecycle processes by bridging technology gaps with a user-friendly, ready-to-use interface. It provides readily accessible tools like RStudio, Jupyter, Shiny, Terminal, and Git, while allowing users to select from a variety of popular programming languages. Users can access diverse data sizes and storage types, configure, and generate Docker environments with ease. Furthermore, it offers one-click access to AWS compute resources, streamlining workflows significantly. Through the app panel of the Code Ocean Computational Workbench, researchers can effortlessly share findings by creating and publishing user-friendly web analysis applications for teams of scientists, all without needing IT support, coding skills, or command-line proficiency. This platform allows for the creation and deployment of interactive analyses that operate seamlessly in standard web browsers. Collaboration and sharing of results are simplified, and resources can be reused and managed with minimal effort. By providing a straightforward application and repository, researchers can efficiently organize, publish, and safeguard project-based Compute Capsules, data assets, and their research outcomes, ultimately promoting a more collaborative and productive research environment. The versatility and ease of use of this workbench make it an invaluable tool for scientists looking to enhance their research capabilities.
  • Previous
  • You're on page 1
  • Next