Average Ratings 1 Rating
Average Ratings 0 Ratings
Description
Scikit-image is an extensive suite of algorithms designed for image processing tasks. It is provided at no cost and without restrictions. Our commitment to quality is reflected in our peer-reviewed code, developed by a dedicated community of volunteers. This library offers a flexible array of image processing functionalities in Python. The development process is highly collaborative, with contributions from anyone interested in enhancing the library. Scikit-image strives to serve as the definitive library for scientific image analysis within the Python ecosystem. We focus on ease of use and straightforward installation to facilitate adoption. Moreover, we are judicious about incorporating new dependencies, sometimes removing existing ones or making them optional based on necessity. Each function in our API comes with comprehensive docstrings that clearly define expected inputs and outputs. Furthermore, arguments that share conceptual similarities are consistently named and positioned within function signatures. Our test coverage is nearly 100%, and every piece of code is scrutinized by at least two core developers prior to its integration into the library, ensuring robust quality control. Overall, scikit-image is committed to fostering a rich environment for scientific image analysis and ongoing community engagement.
Description
Scikit-learn offers a user-friendly and effective suite of tools for predictive data analysis, making it an indispensable resource for those in the field. This powerful, open-source machine learning library is built for the Python programming language and aims to simplify the process of data analysis and modeling. Drawing from established scientific libraries like NumPy, SciPy, and Matplotlib, Scikit-learn presents a diverse array of both supervised and unsupervised learning algorithms, positioning itself as a crucial asset for data scientists, machine learning developers, and researchers alike. Its structure is designed to be both consistent and adaptable, allowing users to mix and match different components to meet their unique requirements. This modularity empowers users to create intricate workflows, streamline repetitive processes, and effectively incorporate Scikit-learn into expansive machine learning projects. Furthermore, the library prioritizes interoperability, ensuring seamless compatibility with other Python libraries, which greatly enhances data processing capabilities and overall efficiency. As a result, Scikit-learn stands out as a go-to toolkit for anyone looking to delve into the world of machine learning.
API Access
Has API
API Access
Has API
Integrations
Python
Akira AI
Cython
DagsHub
Databricks Data Intelligence Platform
Flower
Guild AI
Intel Tiber AI Studio
Keepsake
Label Studio
Integrations
Python
Akira AI
Cython
DagsHub
Databricks Data Intelligence Platform
Flower
Guild AI
Intel Tiber AI Studio
Keepsake
Label Studio
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
scikit-image
Country
United States
Website
scikit-image.org
Vendor Details
Company Name
scikit-learn
Country
United States
Website
scikit-learn.org/stable/
Product Features
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization