Average Ratings 1 Rating
Average Ratings 0 Ratings
Description
Pandas is an open-source data analysis and manipulation tool that is not only fast and powerful but also highly flexible and user-friendly, all within the Python programming ecosystem. It provides various tools for importing and exporting data across different formats, including CSV, text files, Microsoft Excel, SQL databases, and the efficient HDF5 format. With its intelligent data alignment capabilities and integrated management of missing values, users benefit from automatic label-based alignment during computations, which simplifies the process of organizing disordered data. The library features a robust group-by engine that allows for sophisticated aggregating and transforming operations, enabling users to easily perform split-apply-combine actions on their datasets. Additionally, pandas offers extensive time series functionality, including the ability to generate date ranges, convert frequencies, and apply moving window statistics, as well as manage date shifting and lagging. Users can even create custom time offsets tailored to specific domains and join time series data without the risk of losing any information. This comprehensive set of features makes pandas an essential tool for anyone working with data in Python.
Description
Waiting is a compact library designed to facilitate the process of waiting for specific conditions to be met. It fundamentally pauses execution until a designated function returns True, offering various operational modes. Additionally, Waiting is designed to work seamlessly with flux for simulating timelines. The simplest way to utilize it is by providing a function to monitor. It’s straightforward to wait indefinitely; if your predicate yields a value, that value will be returned as the output of wait(). You can also set a timeout, and if this period lapses without the predicate being satisfied, an exception will occur. The library polls the predicate at a default interval of one second, which can be adjusted using the sleep_seconds parameter. When dealing with multiple predicates, Waiting offers two efficient methods for aggregation: any and all. These methods are similar to Python's built-in any() and all(), but they ensure that a predicate is not invoked more than necessary, which is particularly beneficial when working with predicates that are resource-intensive and time-consuming. By streamlining these functions, Waiting enhances both the efficiency and user experience of handling asynchronous operations.
API Access
Has API
API Access
Has API
Integrations
3LC
ApertureDB
Avanzai
Cleanlab
Daft
DagsHub
Dagster+
Dash
Flux
Flyte
Integrations
3LC
ApertureDB
Avanzai
Cleanlab
Daft
DagsHub
Dagster+
Dash
Flux
Flyte
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
pandas
Founded
2008
Website
pandas.pydata.org
Vendor Details
Company Name
Python Software Foundation
Country
United States
Website
pypi.org/project/waiting/
Product Features
Data Analysis
Data Discovery
Data Visualization
High Volume Processing
Predictive Analytics
Regression Analysis
Sentiment Analysis
Statistical Modeling
Text Analytics